Interlocking Friction Governs the Mechanical Fracture of Bilayer MoS2.

A molybdenum disulfide (MoS2) layered system is a two-dimensional (2D) material, which is expected to provide the next generation of electronic devices together with graphene and other 2D materials. Due to its significance for future electronics applications, gaining a deep insight into the fundamental mechanisms upon MoS2 fracture is crucial to prevent mechanical failure toward reliable applications. Here, we report direct experimental observation and atomic modeling of the complex failure behaviors of bilayer MoS2 originating from highly variable interlayer frictions, elucidated with in situ transmission electron microscopy and large-scale reactive molecular dynamics simulations. Our results provide a systematic understanding of the effects that different stacking and loading conditions have on the failure mechanisms and crack-tip behaviors in the bilayer MoS2 systems. Our findings unveil essential properties in fracture of this 2D material and provide mechanistic insight into its mechanical failure.

[1]  David A. Muller,et al.  Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures , 2017, Nature.

[2]  Mark A. Marsalis,et al.  Sub-nanometre channels embedded in two-dimensional materials. , 2017, Nature materials.

[3]  Markus J Buehler,et al.  Multiscale Modeling of Muscular-Skeletal Systems. , 2017, Annual review of biomedical engineering.

[4]  M. Buehler,et al.  Atomically Sharp Crack Tips in Monolayer MoS2 and Their Enhanced Toughness by Vacancy Defects. , 2016, ACS nano.

[5]  J. Appenzeller,et al.  Strain Engineering for Transition Metal Dichalcogenides Based Field Effect Transistors. , 2016, ACS nano.

[6]  Markus J. Buehler,et al.  Molecular mechanics of polycrystalline graphene with enhanced fracture toughness , 2015 .

[7]  Xiaofeng Qian,et al.  Ripplocations in van der Waals layers. , 2015, Nano letters.

[8]  Teng Yang,et al.  Stacking stability of MoS 2 bilayer: An ab initio study , 2014 .

[9]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[10]  C. Franchini,et al.  Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS 2 , MoSe 2 , WS 2 , and WSe 2 , 2014 .

[11]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[12]  Francisco Guinea,et al.  Local strain engineering in atomically thin MoS2. , 2013, Nano letters.

[13]  James A. Stewart,et al.  Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2) , 2013 .

[14]  J. Shan,et al.  Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. , 2013, Nano letters.

[15]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[16]  Feliciano Giustino,et al.  Dislocation-Driven Deformations in Graphene , 2012, Science.

[17]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[18]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[19]  J. Fineberg,et al.  The Near-Tip Fields of Fast Cracks , 2010, Science.

[20]  Changgu Lee,et al.  Frictional Characteristics of Atomically Thin Sheets , 2010, Science.

[21]  J. Warner,et al.  Structural transformations in graphene studied with high spatial and temporal resolution. , 2009, Nature nanotechnology.

[22]  T. Liang,et al.  Parametrization of a reactive many-body potential for Mo-S systems , 2009 .

[23]  P. Gumbsch,et al.  Low-speed fracture instabilities in a brittle crystal , 2008, Nature.

[24]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[25]  Huajian Gao,et al.  Dynamical fracture instabilities due to local hyperelasticity at crack tips , 2006, Nature.

[26]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[27]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[28]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[29]  C. Sevik,et al.  Substrate control for large area continuous films of monolayer MoS 2 by atmospheric pressure chemical vapor deposition , 2017 .

[30]  Klaus Schulten,et al.  Steered Molecular Dynamics , 1999, Computational Molecular Dynamics.