Some theoretical aspects of generalised quadrature methods
暂无分享,去创建一个
[1] E. H. Linfoot. Principles of Optics , 1961 .
[2] John Samson,et al. Symmetry Reduction of Fourier Kernels , 1998 .
[3] J. Hyslop,et al. Comparison of some methods for evaluating infinite range oscillatory integrals , 1976 .
[4] L. Filon. III.—On a Quadrature Formula for Trigonometric Integrals. , 1930 .
[5] D. R. Hartree. The evaluation of a diffraction integral , 1954 .
[6] J. R. Webster,et al. A method to generate generalized quadrature rule for oscillatory integrals , 2000 .
[7] Ulf Torsten Ehrenmark,et al. Far field asymptotic of the two-dimensional linearised sloping beach problem , 1987 .
[8] L. Fox. An introduction to numerical linear algebra , 1964 .
[9] P. G. Ciarlet,et al. Introduction to Numerical Linear Algebra and Optimisation , 1989 .
[10] J. R. Webster,et al. A high order, progressive method for the evaluation of irregular oscillatory integrals , 1997 .
[11] T. Patterson. On high precision methods for the evaluation of fourier integrals with finite and infinite limits , 1976 .
[12] Ulf Torsten. FAR FIELD ASYMPTOTICS OF THE TWO-DIMENSIONAL LINEARISED SLOPING BEACH PROBLEM* , 1987 .
[13] J. R. Webster,et al. The accuracy of solutions of linear equations in practice , 1998 .