Modeling of RNA secondary structures using two-way quantum finite automata

Abstract Quantum finite automata (QFA) play a crucial role in quantum information processing theory. The representation of ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) structures using theory of automata had a great influence in the computer science. Investigation of the relationship between QFA and RNA structures is a natural goal. Two-way quantum finite automata (2QFA) is more dominant than its classical model in language recognition. Motivated by the concept of quantum finite automata, we have modeled RNA secondary structure loops such as, internal loop and double helix loop using two-way quantum finite automata. The major benefit of this approach is that these sequences can be parsed in linear time. In contrast, two-way deterministic finite automata (2DFA) cannot represent RNA secondary structure loops and two-way probabilistic finite automata (2PFA) can parse these sequences in exponential time. To the best of authors knowledge this is the first attempt to represent RNA secondary structure loops using two-way quantum finite automata.

[1]  D. Ecker,et al.  RNAMotif, an RNA secondary structure definition and search algorithm. , 2001, Nucleic acids research.

[2]  Shenggen Zheng,et al.  Promise problems solved by quantum and classical finite automata , 2014, Theor. Comput. Sci..

[3]  James W. J. Anderson,et al.  Evolving stochastic context--free grammars for RNA secondary structure prediction , 2012, BMC Bioinformatics.

[4]  Satoshi Kobayashi,et al.  Modeling RNA Secondary Structures Using Tree Grammars , 1994 .

[5]  Cynthia Dwork,et al.  A Time Complexity Gap for Two-Way Probabilistic Finite-State Automata , 1990, SIAM J. Comput..

[6]  Andrei Khrennikov,et al.  Automaton model of protein: dynamics of conformational and functional states , 2017, Progress in biophysics and molecular biology.

[7]  N. Mermin Quantum theory: Concepts and methods , 1997 .

[8]  Éric Villemonte de la Clergerie,et al.  Modelling Intermolecular Structures and Defining Ambiguity in Gene Sequences using Matrix Insertion-Deletion Systems , 2011, Biology, Computation and Linguistics.

[9]  Theodore Andronikos,et al.  Quantum automata for infinite periodic words , 2015, 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA).

[10]  J. C. Martin,et al.  Introduction to Languages and the Theory of Computation" 3rd Ed , 1991 .

[11]  David B. Searls,et al.  The computational linguistics of biological sequences , 1993, ISMB 1995.

[12]  Russell L. Malmberg,et al.  Stochastic modeling of RNA pseudoknotted structures: a grammatical approach , 2003, ISMB.

[13]  David B. Searls,et al.  String Variable Grammar: A Logic Grammar Formalism for the Biological Language of DNA , 1995, J. Log. Program..

[14]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[15]  Kalra Nidhi,et al.  State Grammar and Deep Pushdown Automata for Biological Sequences of Nucleic Acids , 2016 .

[16]  Keum-Young Sung,et al.  The Use of Context-Sensitive Grammar For Modeling RNA Pseudoknots , 2006, BIOCOMP.

[17]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[18]  Harumichi Nishimura,et al.  An application of quantum finite automata to interactive proof systems , 2009, J. Comput. Syst. Sci..

[19]  Rafael García,et al.  Prediction of RNA Pseudoknotted Secondary Structure using Stochastic Context Free Grammars (SCFG) , 2006, CLEI Electron. J..

[20]  Kumar S. Ray,et al.  1-Way Multihead Quantum Finite State Automata , 2016 .

[21]  Henning Fernau,et al.  Universal Matrix Insertion Grammars with Small Size , 2017, UCNC.

[22]  A. C. Cem Say,et al.  Debates with Small Transparent Quantum Verifiers , 2014, Developments in Language Theory.

[23]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[24]  Rusins Freivalds,et al.  Probabilistic Two-Way Machines , 1981, MFCS.

[25]  Lakshmanan Kuppusamy,et al.  Modelling DNA and RNA secondary structures using matrix insertion–deletion systems , 2016, Int. J. Appl. Math. Comput. Sci..

[26]  Sebastian Sakowski,et al.  Autonomous Push-down Automaton Built on DNA , 2011, Informatica.

[27]  K. Livak,et al.  Real-time quantification of microRNAs by stem–loop RT–PCR , 2005, Nucleic acids research.

[28]  R. C. Underwood,et al.  THE APPLICATION OF STOCHASTIC CONTEXT-FREE GRAMMARS TO FOLDING, ALIGNING AND MODELING HOMOLOGOUS RNA SEQUENCES , 1993 .

[29]  Shenggen Zheng,et al.  Application of distributed semi-quantum computing model in phase estimation , 2017, Inf. Process. Lett..

[30]  Elena Rivas,et al.  The language of RNA: a formal grammar that includes pseudoknots , 2000, Bioinform..

[31]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[32]  Shenggen Zheng,et al.  Power of the interactive proof systems with verifiers modeled by semi-quantum two-way finite automata , 2013, Inf. Comput..

[33]  Paul W. K. Rothemund,et al.  A DNA and restriction enzyme implementation of Turing machines , 1995, DNA Based Computers.

[34]  Natasa Jonoska,et al.  Biomolecular Implementation of Computing Devices with Unbounded Memory , 2004, DNA.

[35]  R. C. Underwood,et al.  Stochastic context-free grammars for tRNA modeling. , 1994, Nucleic acids research.

[36]  Lakshmanan Kuppusamy,et al.  Matrix Insertion-Deletion Systems for Bio-Molecular Structures , 2011, ICDCIT.

[37]  Shenggen Zheng,et al.  Global multipartite entanglement dynamics in Grover’s search algorithm , 2017, Quantum Inf. Process..

[38]  Lakshmanan Kuppusamy,et al.  Formal Language Representation and Modelling Structures Underlying RNA Folding Process , 2016, ICTCSDM.

[39]  Hiroyuki Seki,et al.  A grammar-based approach to RNA pseudoknotted structure prediction for aligned sequences , 2011, 2011 IEEE 1st International Conference on Computational Advances in Bio and Medical Sciences (ICCABS).

[40]  Jiacun Wang,et al.  Handbook of Finite State Based Models and Applications , 2012 .

[41]  John C. Shepherdson,et al.  The Reduction of Two-Way Automata to One-Way Automata , 1959, IBM J. Res. Dev..