High-performance 1.5 mu m wavelength InGaAs-InGaAsP strained quantum well lasers and amplifiers

Improved performance of 1.5- mu m wavelength lasers and laser amplifiers using strained In/sub x/Ga/sub 1-x/As-InGaAsP quantum well devices is reported. The device structures fabricated to study the effects of strained quantum wells on their performance are described. These devices showed TM mode gain, demonstrating the strain-induced heavy-hole-light hole reversal in the valence band. Lasers using these tensile strained quantum wells show higher and narrower gain spectra and laser amplifiers have a higher differential gain compared to compressively strained quantum well devices. Consequently, the tensile strained quantum well lasers show the smallest linewidth enhancement factor alpha =1.5 (compression alpha =2.5) and the lowest K-factor of 0.22 ns (compression K=0.58 ns), resulting in an estimated intrinsic 3 dB modulation bandwidth of 40 GHz (compression 15 GHz). >

[1]  D. M. Cooper,et al.  High-power 1.5 mu m all-MOVPE buried heterostructure graded index separate confinement multiple quantum well lasers , 1989 .

[2]  R. Bhat,et al.  Submilliampere-threshold 1.5- mu m strained-layer multiple quantum well lasers , 1990, IEEE Photonics Technology Letters.

[3]  N. Olsson,et al.  Growth and characterization of continuously graded index separate confinement heterostructure (GRIN-SCH) InGaAs-InP long wavelength strained layer quantum-well lasers by metalorganic vapor phase epitaxy , 1990 .

[4]  A. Sugimura,et al.  Auger recombination effect on threshold current of InGaAsP quantum well lasers , 1983 .

[5]  H. Hasegawa,et al.  Theory of Cyclotron Resonance in Strained Silicon Crystals , 1963 .

[6]  N. Dutta,et al.  InGaAs/InP graded-index quantum well lasers with nearly ideal static characteristics , 1990 .

[7]  Eli Yablonovitch,et al.  Reduction of lasing threshold current density by the lowering of valence band effective mass , 1986 .

[8]  A. R. Adams,et al.  Band-structure engineering for low-threshold high-efficiency semiconductor lasers , 1986 .

[9]  J. LaCourse,et al.  Anomalously high damping in strained InGaAs-GaAs single quantum well lasers , 1991, IEEE Photonics Technology Letters.

[10]  O'Reilly,et al.  Theory of the hole subband dispersion in strained and unstrained quantum wells. , 1986, Physical review. B, Condensed matter.

[11]  Kerry J. Vahala,et al.  Effect of doping on the optical gain and the spontaneous noise enhancement factor in quantum well amplifiers and lasers studied by simple analytical expressions , 1988 .

[12]  P.J.A. Thijs,et al.  Tunable three-section, strained MQW, PA-DFB's with large single mode tuning range (72 A) and narrow linewidth (around 1 Mhz) , 1990, 12th IEEE International Conference on Semiconductor Laser.

[13]  P.J.A. Thijs,et al.  High quantum efficiency, high power, modulation doped GaInAs strained-layer quantum well laser diodes emitting at 1.5 mu m , 1989 .

[14]  Masahiro Asada,et al.  Gain and intervalence band absorption in quantum-well lasers , 1984 .

[15]  E. P. O'Reilly,et al.  Proposal For A Low Threshold Current Long Wavelength Strained Layer Laser , 1987, Other Conferences.

[16]  E. P. O'Reilly,et al.  Low Threshold Current InP-Based Strained-Layer 1.55µm Lasers , 1988, Other Conferences.

[17]  E. O’Reilly,et al.  Improved dynamics and linewidth enhancement factor in strained-layer lasers , 1989 .

[18]  N. Dutta,et al.  Linewidth enhancement factor for InGaAs/InP strained quantum well lasers , 1990 .

[19]  R. Cavicchi,et al.  Admittance spectroscopy measurement of band offsets in strained layers of InxGa1−xAs grown on InP , 1989 .

[20]  T. V. Dongen,et al.  Structures for improved 1.5 μm wavelength lasers grown by LP-OMVPE; InGaAs-InP strained-layer quantum wells a good candidate , 1991 .

[21]  Eli Yablonovitch,et al.  Band structure engineering of semiconductor lasers for optical communications , 1988 .

[22]  Niloy K. Dutta,et al.  Calculation of Auger rates in a quantum well structure and its application to InGaAsP quantum well lasers , 1983 .

[23]  Gregory Raybon,et al.  Large- and small-signal gain characteristics of 1.5 μm multiple quantum well optical amplifiers , 1990 .

[24]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[25]  L. A. Coldren,et al.  Extremely wide modulation bandwidth in a low threshold current strained quantum well laser , 1988 .

[26]  C. Bulle-lieuwma,et al.  Improved 1.5 μm wavelength lasers using high quality LP-OMVPE grown strained-layer InGaAs quantum wells , 1990 .

[27]  N. Olsson,et al.  High power output 1.48–1.51 μm continuously graded index separate confinement strained quantum well lasers , 1990 .

[28]  T. Koch,et al.  Effect of nonlinear gain reduction on semiconductor laser wavelength chirping , 1986 .

[29]  Yia-Chung Chang,et al.  Electronic structures of In1−xGaxAs-InP strained-layer quantum wells , 1989 .

[30]  Auger effects in acceptor‐doped long‐wavelength strained quantum well lasers , 1989 .

[31]  John E. Bowers,et al.  Low internal loss separate confinement heterostructure InGaAs/InGaAsP quantum well laser , 1987 .

[32]  N. Chinone,et al.  Linewidth enhancement factor in strained quantum well lasers , 1989, IEEE Photonics Technology Letters.

[33]  P. Thijs,et al.  120-mW cw output power from 1.5-jum wavelength modulation doped InGaAs strained-layer quantum well lasers , 1990 .

[34]  E. Young,et al.  An effective barrier against the interdiffusion of iron and zinc dopants in InP , 1991 .

[35]  K. Petermann Laser Diode Modulation and Noise , 1988 .

[36]  Tawee Tanbun-Ek,et al.  Very low threshold InGaAs/InGaAsP graded index separate confinement heterostructure quantum well lasers grown by atmospheric pressure metalorganic vapor phase epitaxy , 1989 .

[37]  M. Oron,et al.  Low threshold highly efficient strained quantum well lasers at 1.5 micrometre wavelength , 1990 .

[38]  Naoki Chinone,et al.  Enhanced relaxation oscillation frequency and reduced nonlinear K-factor in InGaAs/InGaAsP MQW lambda /4-shifted DFB lasers , 1990 .

[39]  A. Yariv,et al.  Auger recombination in quantum-well InGaAsP heterostructure lasers , 1982 .

[40]  R. Olshansky,et al.  Frequency response of 1.3µm InGaAsP high speed semiconductor lasers , 1987 .

[41]  Hiroshi Ishikawa,et al.  Tunable, narrow-linewidth and high-power λ/4-shifted DFB laser , 1989 .

[42]  J. Binsma,et al.  High power and high temperature operation of 1.5 mu m wavelength strained-layer InGaAs/InGaAsP SIPBH lasers , 1991, [Proceedings 1991] Third International Conference Indium Phosphide and Related Materials.

[43]  T. Tanbun-ek,et al.  Strained InGaAs/InP quantum well lasers , 1990 .

[44]  R. A. Abram,et al.  Auger recombination in a quantum well heterostructure , 1983 .

[45]  Masahiro Asada,et al.  The Temperature Dependence of the Efficiency and Threshold Current of In1-xGaxAsyP1-y Lasers Related to Intervalence Band Absorption , 1980 .

[46]  H. W. Kesteren,et al.  Atomic abruptness in InGaAsP/InP quantum well heterointerfaces grown by low‐pressure organometallic vapor phase epitaxy , 1988 .

[47]  S. Kumashiro,et al.  Analysis of leakage current in buried heterostructure lasers with semiinsulating blocking layers , 1989 .

[48]  N. Dutta,et al.  InGaAs/InP quantum well lasers with sub-mA threshold current , 1990 .