HALO: Heterogeneity-Aware Load Balancing

Load Balancers (LBs) play a critical role in managing the performance and resource utilization of distributed systems. However, developing efficient LBs for large, distributed clusters is challenging for several reasons: (i) large clusters require numerous scheduling decisions per second, (ii) such clusters typically consist of heterogeneous servers that widely differ in their computing power, and (iii) such clusters often experience significant changes in load. In this paper we propose HALO, a class of scalable, heterogeneity-aware LBs for cluster systems. HALO LBs are based on simple randomized algorithms that are analytically optimized for heterogeneity. We develop HALO for randomized, Round-Robin, and Power-of-D LBs. We illustrate the benefits of HALO and demonstrate its superiority over other comparable LBs using analytical, simulation, and (Apache-based) implementation results. Our results show that HALO LBs provide significantly lower response times without incurring additional overhead across a wide range of scenarios.

[1]  Costas Courcoubetis,et al.  Weighted Round-Robin Cell Multiplexing in a General-Purpose ATM Switch Chip , 1991, IEEE J. Sel. Areas Commun..

[2]  Ricardo Bianchini,et al.  Energy conservation in heterogeneous server clusters , 2005, PPoPP.

[3]  Eli Upfal,et al.  Balanced Allocations , 1999, SIAM J. Comput..

[4]  David Mosberger,et al.  httperf—a tool for measuring web server performance , 1998, PERV.

[5]  Michael Mitzenmacher,et al.  The Power of Two Choices in Randomized Load Balancing , 2001, IEEE Trans. Parallel Distributed Syst..

[6]  Manish Marwah,et al.  Hybrid resource provisioning for minimizing data center SLA violations and power consumption , 2012, Sustain. Comput. Informatics Syst..

[7]  Carlo Curino,et al.  Apache Hadoop YARN: yet another resource negotiator , 2013, SoCC.

[8]  Scott Shenker,et al.  The Case for Tiny Tasks in Compute Clusters , 2013, HotOS.

[9]  Lothar Thiele,et al.  Power management schemes for heterogeneous clusters under quality of service requirements , 2011, SAC.

[10]  Xi Zhang,et al.  Optimal Load-Balancing for Heterogeneous Clusters , 2015, PERV.

[11]  Patrick Wendell,et al.  Sparrow: distributed, low latency scheduling , 2013, SOSP.

[12]  Rong Wu,et al.  Round robin scheduling of heterogeneous parallel servers in heavy traffic , 2009, Eur. J. Oper. Res..

[13]  Randy H. Katz,et al.  Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center , 2011, NSDI.

[14]  Edward D. Lazowska,et al.  Adaptive load sharing in homogeneous distributed systems , 1986, IEEE Transactions on Software Engineering.

[15]  Priyesh Kanungo,et al.  Dynamic load balancing algorithm for scalable heterogeneous web server cluster with content awareness , 2010, Trendz in Information Sciences & Computing(TISC2010).

[16]  Bruce M. Maggs,et al.  Cutting the electric bill for internet-scale systems , 2009, SIGCOMM '09.

[17]  Luiz André Barroso,et al.  The tail at scale , 2013, CACM.

[18]  Michael Abd-El-Malek,et al.  Omega: flexible, scalable schedulers for large compute clusters , 2013, EuroSys '13.

[19]  Martin Arlitt,et al.  A workload characterization study of the 1998 World Cup Web site , 2000, IEEE Netw..

[20]  Werner Vogels,et al.  Dynamo: amazon's highly available key-value store , 2007, SOSP.

[21]  George Varghese,et al.  Efficient fair queueing using deficit round robin , 1995, SIGCOMM '95.

[22]  Tony Tung,et al.  Scaling Memcache at Facebook , 2013, NSDI.

[23]  Randy H. Katz,et al.  Heterogeneity and dynamicity of clouds at scale: Google trace analysis , 2012, SoCC '12.

[24]  Randy H. Katz,et al.  Heterogeneity-Aware Resource Allocation and Scheduling in the Cloud , 2011, HotCloud.

[25]  Geoff Coulson,et al.  SHRED: a CPU scheduler for heterogeneous applications , 2005, IS&T/SPIE Electronic Imaging.

[26]  Mor Harchol-Balter,et al.  AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data Centers , 2012, TOCS.

[27]  Guillaume Pierre,et al.  Wikipedia workload analysis for decentralized hosting , 2009, Comput. Networks.

[28]  Thomas F. Wenisch,et al.  Power management of online data-intensive services , 2011, 2011 38th Annual International Symposium on Computer Architecture (ISCA).

[29]  Martin Arlitt,et al.  Workload Characterization of the 1998 World Cup Web Site , 1999 .

[30]  Ripal Nathuji,et al.  Exploiting Platform Heterogeneity for Power Efficient Data Centers , 2007, Fourth International Conference on Autonomic Computing (ICAC'07).

[31]  Wolf-Dietrich Weber,et al.  Power provisioning for a warehouse-sized computer , 2007, ISCA '07.

[32]  Manish Marwah,et al.  Minimizing data center SLA violations and power consumption via hybrid resource provisioning , 2011, 2011 International Green Computing Conference and Workshops.

[33]  Mor Harchol-Balter,et al.  Optimal power allocation in server farms , 2009, SIGMETRICS '09.

[34]  Mor Harchol-Balter,et al.  Performance Modeling and Design of Computer Systems: Queueing Theory in Action , 2013 .