Electromechanical Model of a Tapered Piezoelectric Energy Harvester

In this paper, we present a complete electromechanical model of a tapered piezoelectric energy harvester based on the semi-analytical vibrational model of the tapered cantilever derived in our previous work (<italic>Journal of Sound and Vibration</italic>, 2018). The electromechanical dynamic model has been converted to an equivalent electrical circuit model (ECM) of the device that can be readily simulated, along with the power conversion and signal conditioning circuitry, using commercial CAD environments for circuit design and analysis. The results show that the proposed model can accurately predict the performance of the tapered energy harvester as an ECM extracted from the finite element model of the device and can do so <inline-formula> <tex-math notation="LaTeX">$\times 15$ </tex-math></inline-formula> faster for 10 perturbation expansion terms when compared to a reduced-order FEM solution and <inline-formula> <tex-math notation="LaTeX">$\times 150$ </tex-math></inline-formula> faster compared to a regular FEM solution.

[1]  A. Pandey,et al.  Performance of non-uniform cantilever based piezoelectric energy harvester , 2018 .

[2]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[3]  Alper Erturk,et al.  Electromechanical Modeling of Piezoelectric Energy Harvesters , 2009 .

[4]  Shadrach Roundy,et al.  On the Effectiveness of Vibration-based Energy Harvesting , 2005 .

[5]  Gou-Jen Wang,et al.  Analytical modeling of piezoelectric vibration-induced micro power generator , 2006 .

[6]  Xiaoming Wu,et al.  MODELING AND SIMULATION OF PIEZOELECTRIC MEMS ENERGY HARVESTING DEVICE , 2007 .

[7]  S. Singh,et al.  Pull-in analysis of non-uniform microcantilever beams under large deflection , 2015 .

[8]  D. Guyomar,et al.  Efficiency Enhancement of a Piezoelectric Energy Harvesting Device in Pulsed Operation by Synchronous Charge Inversion , 2005 .

[9]  Serge Abrate,et al.  Vibration of non-uniform rods and beams , 1995 .

[10]  Daniel J. Inman,et al.  Estimation of Electric Charge Output for Piezoelectric Energy Harvesting , 2004 .

[11]  L. Meirovitch,et al.  Fundamentals of Vibrations , 2000 .

[12]  Du Toit,et al.  Modeling and design of a MEMS piezoelectric vibration energy harvester , 2005 .

[13]  N. Elvin,et al.  A General Equivalent Circuit Model for Piezoelectric Generators , 2009 .

[14]  I. Elfadel,et al.  Variation-aware modelling of micro-scale piezoelectric energy harvesters , 2018, 2018 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP).

[15]  I. Elfadel,et al.  Vibrational model of a prismatic multilayered tapered cantilever using perturbation analysis , 2019, Journal of Sound and Vibration.

[16]  Jan M. Rabaey,et al.  Improving power output for vibration-based energy scavengers , 2005, IEEE Pervasive Computing.

[17]  R. B. Yates,et al.  Analysis Of A Micro-electric Generator For Microsystems , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[18]  Daniel J. Inman,et al.  A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters , 2008 .

[19]  Noël E. Dutoit,et al.  Experimental Verification of Models for Microfabricated Piezoelectric Vibration Energy Harvesters , 2007 .

[20]  D. Inman,et al.  On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters , 2008 .

[21]  D. Guyomar,et al.  Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction , 2005 .

[22]  Han-Chung Wang,et al.  Generalized Hypergeometric Function Solutions on the Transverse Vibration of a Class of Nonuniform Beams , 1967 .

[23]  Yaowen Yang,et al.  Equivalent Circuit Modeling of Piezoelectric Energy Harvesters , 2009 .

[24]  Paul K. Wright,et al.  Alternative Geometries for Increasing Power Density in Vibration Energy Scavenging for Wireless Sensor Networks , 2005 .

[25]  Henry A. Sodano,et al.  Model of a single mode energy harvester and properties for optimal power generation , 2008 .