The Descriptive Complexity Approach to LOGCFL

Building upon the known generalized-quantifier-based firstorder characterization of LOGCFL, we lay the groundwork for a deeper investigation. Specifically, we examine subclasses of LOGCFL arising from varying the arity and nesting of groupoidal quantifiers. Our work extends the elaborate theory relating monoidal quantifiers to NC1 and its subclasses. In the absence of the BIT predicate, we resolve the main issues: we show in particular that no single outermost unary groupoidal quantifier with FO can capture all the context-free languages, and we obtain the surprising result that a variant of Greibach's "hardest contextfree language" is LOGCFL-complete under quantifier-free BIT-free interpretations. We then prove that FO with unary groupoidal quantifiers is strictly more expressive with the BIT predicate than without. Considering a particular groupoidal quantifier, we prove that first-order logic with majority of pairs is strictly more expressive than first-order with majority of individuals. As a technical tool of independent interest, we define the notion of an aperiodic nondeterministic finite automaton and prove that FO translations are precisely the mappings computed by single-valued aperiodic nondeterministic finite transducers.

[1]  Neil Immerman,et al.  Expressibility and Parallel Complexity , 1989, SIAM J. Comput..

[2]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[3]  Jacques Stern,et al.  Complexity of Some Problems from the Theory of Automata , 1985, Inf. Control..

[4]  Perlindström First Order Predicate Logic with Generalized Quantifiers , 1966 .

[5]  Jean Berstel,et al.  Context-Free Languages and Pushdown Automata , 1997, Handbook of Formal Languages.

[6]  Neil Immerman,et al.  Descriptive and Computational Complexity , 1989, FCT.

[7]  Robert McNaughton,et al.  Counter-Free Automata (M.I.T. research monograph no. 65) , 1971 .

[8]  George Boolos,et al.  Computability and logic , 1974 .

[9]  Heribert Vollmer,et al.  Lindström Quantifiers and Leaf Language Definability , 1996, Int. J. Found. Comput. Sci..

[10]  C. Smorynski Logical Number Theory I , 1991 .

[11]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[12]  Thomas Schwentick,et al.  Logics For Context-Free Languages , 1994, CSL.

[13]  Arto Salomaa,et al.  Aspects of Classical Language Theory , 1997, Handbook of Formal Languages.

[14]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[15]  BarringtonDavid A. Mix,et al.  Regular languages in NC1 , 1992 .

[16]  Y. Gurevich On Finite Model Theory , 1990 .

[17]  Sheila A. Greibach,et al.  The Hardest Context-Free Language , 1973, SIAM J. Comput..

[18]  N. Immerman,et al.  On uniformity within NC 1 . , 1988 .

[19]  Denis Thérien,et al.  Finite monoids and the fine structure of NC1 , 1987, STOC.

[20]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[21]  Petr Hájek,et al.  Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.

[22]  Howard Straubing,et al.  Regular Languages in NC¹ , 1992, J. Comput. Syst. Sci..

[23]  Scott Weinstein,et al.  Elementary Properties of the Finite Ranks , 1998, Math. Log. Q..

[24]  Ivan Hal Sudborough,et al.  On the Tape Complexity of Deterministic Context-Free Languages , 1978, JACM.

[25]  H. Venkateswaran,et al.  Properties that characterize LOGCFL , 1987, J. Comput. Syst. Sci..

[26]  Neil Immerman,et al.  On Uniformity within NC¹ , 1990, J. Comput. Syst. Sci..

[27]  Pierre McKenzie,et al.  Extensions to Barrington's M-Program Model , 1993, Theor. Comput. Sci..

[28]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[29]  Stephen A. Cook,et al.  Characterizations of Pushdown Machines in Terms of Time-Bounded Computers , 1971, J. ACM.

[30]  Michael A. Arbib,et al.  An Introduction to Formal Language Theory , 1988, Texts and Monographs in Computer Science.

[31]  Howard Straubing Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.

[32]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..