Utilisation des Points d'Intérêts Couleurs pour le Suivi d'Objets

This paper presents a new approach for tracking objects in complex situations such as people in a crowd or players on a soccer field. Each object in the image is represented by several interest points (IP). These IPs are obtained using the color version of the Harris IP detector. Each IP is characterized by the local appearance (chromatic first-order local jet) of the object around the point and by geometric parameters. We track objects by matching IPs from image to image, based on the Mahalanobis distance. The approach is robust to occlusion. Performance is illustrated with some examples.

[1]  Mubarak Shah,et al.  Human tracking in multiple cameras , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[2]  Andrew Zisserman,et al.  Multi-view Matching for Unordered Image Sets, or "How Do I Organize My Holiday Snaps?" , 2002, ECCV.

[3]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[4]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[5]  J. Crowley,et al.  Multi-Modal Tracking of Interacting Targets Using Gaussian Approximations , 2001 .

[6]  Azriel Rosenfeld,et al.  Tracking Groups of People , 2000, Comput. Vis. Image Underst..

[7]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[8]  Irfan Essa,et al.  Tracking Multiple People with Multiple Cameras , 1998 .

[9]  Peihua Li,et al.  Visual contour tracking based on particle filters , 2003, Image Vis. Comput..

[10]  Jacques Verly,et al.  The State of the Art in Multiple Object Tracking Under Occlusion in Video Sequences , 2003 .

[11]  Rachid Deriche,et al.  Differential invariants for color images , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[12]  Larry S. Davis,et al.  Probabilistic framework for segmenting people under occlusion , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[13]  Bruno Lameyre,et al.  SAP: A robust approach to track objects in video streams with Snakes And Points , 2004, BMVC.

[14]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[15]  Takeo Kanade,et al.  A System for Video Surveillance and Monitoring , 2000 .

[16]  Valérie Gouet,et al.  About optimal use of color points of interest for content-based image retrieval , 2002 .

[17]  Ramin Zabih,et al.  Bayesian multi-camera surveillance , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[18]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[19]  J. Koenderink,et al.  Representation of local geometry in the visual system , 1987, Biological Cybernetics.

[20]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..