Multiterminal Secret Key Agreement

The problem of secret key agreement by public discussion is studied under a general multiterminal network, where each user can both send and receive over a private channel. Single-letter upper and lower bounds are for the maximum achievable key rate. The bounds are shown to match for a large class of private channels. A counter-example shows that the bounds do not match in general, and a better cooperative scheme can narrow the gap.

[1]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[2]  George B. Dantzig,et al.  Linear Programming 1: Introduction , 1997 .

[3]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[4]  Imre Csiszár,et al.  Secrecy capacities for multiple terminals , 2004, IEEE Transactions on Information Theory.

[5]  Chung Chan,et al.  Generating secret in a network , 2010 .

[6]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[7]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[8]  Gilles Brassard,et al.  Privacy Amplification by Public Discussion , 1988, SIAM J. Comput..

[9]  Chung Chan Universal secure network coding by non-linear secret key agreement , 2012, 2012 International Symposium on Network Coding (NetCod).

[10]  Gilles Brassard,et al.  Experimental Quantum Cryptography , 1990, EUROCRYPT.

[11]  F. Jones Lebesgue Integration on Euclidean Space , 1993 .

[12]  Philip D. Plowright,et al.  Convexity , 2019, Optimization for Chemical and Biochemical Engineering.

[13]  Devavrat Shah,et al.  On entropy for mixtures of discrete and continuous variables , 2006, ArXiv.

[14]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[15]  Mokshay M. Madiman,et al.  Information Inequalities for Joint Distributions, With Interpretations and Applications , 2008, IEEE Transactions on Information Theory.

[16]  Imre Csiszár,et al.  Secrecy generation for multiple input multiple output channel models , 2009, 2009 IEEE International Symposium on Information Theory.

[17]  Masahito Hayashi,et al.  Exponential Decreasing Rate of Leaked Information in Universal Random Privacy Amplification , 2009, IEEE Transactions on Information Theory.

[18]  U. Maurer,et al.  Secret key agreement by public discussion from common information , 1993, IEEE Trans. Inf. Theory.

[19]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[20]  Himanshu Tyagi,et al.  When Is a Function Securely Computable? , 2010, IEEE Transactions on Information Theory.

[21]  Chung Chan,et al.  Linear perfect secret key agreement , 2011, 2011 IEEE Information Theory Workshop.

[22]  Imre Csiszár,et al.  Secrecy capacities for multiterminal channel models , 2005, ISIT.

[23]  Chung Chan,et al.  The hidden flow of information , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[24]  Chung Chan Agreement of a restricted secret key , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[25]  Chung Chan Cyclic linking network , 2013, 2013 IEEE International Symposium on Information Theory.

[26]  Venkat Anantharam,et al.  Information-Theoretic Key Agreement of Multiple Terminals—Part I , 2010, IEEE Transactions on Information Theory.

[27]  Frode Terkelsen,et al.  Some Minimax Theorems. , 1972 .

[28]  Suhas N. Diggavi,et al.  Wireless Network Information Flow: A Deterministic Approach , 2009, IEEE Transactions on Information Theory.

[29]  Chung Chan,et al.  Mutual dependence for secret key agreement , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[30]  Venkat Anantharam,et al.  Information-Theoretic Key Agreement of Multiple Terminals—Part II: Channel Model , 2010, IEEE Transactions on Information Theory.

[31]  Raymond W. Yeung,et al.  Information Theory and Network Coding , 2008 .

[32]  Chung Chan,et al.  Multiterminal secure source coding for a common secret source , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[33]  Chung Chan,et al.  Matroidal undirected network , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[34]  Chung Chan,et al.  Delay of linear perfect secret key agreement , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[35]  Ueli Maurer,et al.  Perfect cryptographic security from partially independent channels , 1991, STOC '91.

[36]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[37]  Kenneth W. Shum,et al.  Combinatorial flow over cyclic linear networks , 2013, 2013 IEEE Information Theory Workshop (ITW).

[38]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[39]  M. Sion On general minimax theorems , 1958 .

[40]  Rudolf Ahlswede,et al.  Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.