SOAR TESS Survey. I. Sculpting of TESS Planetary Systems by Stellar Companions

The Transiting Exoplanet Survey Satellite (TESS) is finding transiting planet candidates around bright, nearby stars across the entire sky. The large field of view, however, results in low spatial resolution; therefore, multiple stars contribute to almost every TESS light curve. High angular resolution imaging can detect the previously unknown companions to planetary candidate hosts that dilute the transit depths, lead to host star ambiguity, and, in some cases, are the source of false-positive transit signals. We use speckle imaging on the Southern Astrophysical Research (SOAR) telescope to search for companions to 542 TESS planet candidate hosts in the southern sky. We provide correction factors for the 117 systems with resolved companions due to photometric contamination. The contamination in TESS due to close binaries is similar to that found in surveys of Kepler planet candidates. For the solar-type population, we find a deep deficit of close binary systems with projected stellar separations less than 100 au among planet candidate hosts (44 observed binaries compared to 124 expected based on field binary statistics). The close binary suppression among TESS planet candidate hosts is similar to that seen for the more distant Kepler population. We also find a large surplus of TESS planet candidates in wide binary systems detected in both SOAR and Gaia DR2 (119 observed binaries compared to 77 expected). These wide binaries almost exclusively host giant planets, however, suggesting that orbital migration caused by perturbations from the stellar companion may lead to planet–planet scattering and suppress the population of small planets in wide binaries. Both trends are also apparent in the M dwarf planet candidate hosts.

[1]  Keivan G. Stassun,et al.  The Revised TESS Input Catalog and Candidate Target List , 2019, The Astronomical Journal.

[2]  Adam L. Kraus,et al.  TESS Spots a Compact System of Super-Earths around the Naked-eye Star HR 858 , 2019, The Astrophysical Journal.

[3]  David J Armstrong,et al.  HD 213885b: a transiting 1-d-period super-Earth with an Earth-like composition around a bright (V = 7.9) star unveiled by TESS , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  B. Biller,et al.  A high binary fraction for the most massive close-in giant planets and brown dwarf desert members , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  Keivan G. Stassun,et al.  An Eccentric Massive Jupiter Orbiting a Subgiant on a 9.5-day Period Discovered in the Transiting Exoplanet Survey Satellite Full Frame Images , 2019, The Astronomical Journal.

[6]  Keivan G. Stassun,et al.  Near-resonance in a System of Sub-Neptunes from TESS , 2019, The Astronomical Journal.

[7]  Kenneth J. Slatten,et al.  The Solar Neighborhood. XLV. The Stellar Multiplicity Rate of M Dwarfs Within 25 pc , 2019, The Astronomical Journal.

[8]  Keivan G. Stassun,et al.  TESS Delivers Its First Earth-sized Planet and a Warm Sub-Neptune , 2018, The Astrophysical Journal.

[9]  Adam L. Kraus,et al.  How to Constrain Your M Dwarf. II. The Mass–Luminosity–Metallicity Relation from 0.075 to 0.70 Solar Masses , 2018, The Astrophysical Journal.

[10]  G. Laughlin,et al.  HD 2685 b: a hot Jupiter orbiting an early F-type star detected by TESS , 2018, Astronomy & Astrophysics.

[11]  et al,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[12]  Chelsea X. Huang,et al.  The Longest Period TESS Planet Yet: A Sub-Neptune Transiting A Bright, Nearby K Dwarf Star , 2018, 1901.00051.

[13]  Chelsea X. Huang,et al.  TESS Discovery of a Transiting Super-Earth in the pi Mensae System , 2018, The astrophysical journal. Letters.

[14]  Christoph Baranec,et al.  Measuring the Recoverability of Close Binaries in Gaia DR2 with the Robo-AO Kepler Survey , 2018, The Astronomical Journal.

[15]  Steve B. Howell,et al.  Stellar Companions of Exoplanet Host Stars in K2 , 2018, The Astronomical Journal.

[16]  D. Duev,et al.  Robo-AO Kepler Survey. V. The Effect of Physically Associated Stellar Companions on Planetary Systems , 2018, The Astronomical Journal.

[17]  C. Bailer-Jones,et al.  Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2 , 2018, The Astronomical Journal.

[18]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[19]  J. Winn,et al.  Biases in Planet Occurrence Caused by Unresolved Binaries in Transit Surveys , 2018, 1804.07764.

[20]  P. Hopkins,et al.  Where are the most ancient stars in the Milky Way? , 2018, Monthly notices of the Royal Astronomical Society.

[21]  A. Tokovinin Ten Years of Speckle Interferometry at SOAR , 2018, 1801.04772.

[22]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[23]  G. Bakos The HATNet and HATSouth Exoplanet Surveys , 2018, 1801.00849.

[24]  Keivan G. Stassun,et al.  The TESS Input Catalog and Candidate Target List , 2017, The Astronomical Journal.

[25]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[26]  Juan Antonio Belmonte,et al.  Handbook of Exoplanets , 2018 .

[27]  Christoph Baranec,et al.  Robo-AO Kepler Survey. IV. The Effect of Nearby Stars on 3857 Planetary Candidate Systems , 2017, 1712.04454.

[28]  E. Kerins,et al.  High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). II. Lucky Imaging results from 2015 and 2016 , 2017, 1709.07476.

[29]  Christoph Baranec,et al.  Automated Adaptive Optics , 2017, The WSPC Handbook of Astronomical Instrumentation.

[30]  Leslie Hebb,et al.  The EBLM Project IV. Spectroscopic orbits of over 100 eclipsing M dwarfs masquerading as transiting hot-Jupiters , 2017, 1707.07521.

[31]  Steve B. Howell,et al.  Assessing the Effect of Stellar Companions from High-resolution Imaging of Kepler Objects of Interest , 2017, 1701.06577.

[32]  A. Hamers Hints for Hidden Planetary Companions to Hot Jupiters in Stellar Binaries , 2017, 1701.04401.

[33]  R. Riddle,et al.  ROBO-AO KEPLER PLANETARY CANDIDATE SURVEY. III. ADAPTIVE OPTICS IMAGING OF 1629 KEPLER EXOPLANET CANDIDATE HOST STARS , 2017 .

[34]  Zheng Zheng,et al.  Exoplanet orbital eccentricities derived from LAMOST–Kepler analysis , 2016, Proceedings of the National Academy of Sciences.

[35]  Henry Ngo,et al.  FRIENDS OF HOT JUPITERS. IV. STELLAR COMPANIONS BEYOND 50 au MIGHT FACILITATE GIANT PLANET FORMATION, BUT MOST ARE UNLIKELY TO CAUSE KOZAI–LIDOV MIGRATION , 2016, 1606.07102.

[36]  Daniel Foreman-Mackey,et al.  corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..

[37]  Peter Tenenbaum,et al.  The TESS science processing operations center , 2016, Astronomical Telescopes + Instrumentation.

[38]  M. R. Haas,et al.  FALSE POSITIVE PROBABILITIES FOR ALL KEPLER OBJECTS OF INTEREST: 1284 NEWLY VALIDATED PLANETS AND 428 LIKELY FALSE POSITIVES , 2016, 1605.02825.

[39]  Brendan P. Bowler,et al.  Imaging Extrasolar Giant Planets , 2016, 1605.02731.

[40]  Christoph Baranec,et al.  ROBO-AO KEPLER PLANETARY CANDIDATE SURVEY. II. ADAPTIVE OPTICS IMAGING OF 969 KEPLER EXOPLANET CANDIDATE HOST STARS , 2016, 1604.08604.

[41]  M. Ireland,et al.  THE IMPACT OF STELLAR MULTIPLICITY ON PLANETARY SYSTEMS. I. THE RUINOUS INFLUENCE OF CLOSE BINARY COMPANIONS , 2016, 1604.05744.

[42]  E. Kerins,et al.  High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). I. Lucky imaging observations of 101 systems in the southern hemisphere , 2016, 1603.03274.

[43]  Chelsea X. Huang,et al.  WARM JUPITERS ARE LESS LONELY THAN HOT JUPITERS: CLOSE NEIGHBORS , 2016, 1601.05095.

[44]  M. Ireland,et al.  They are small worlds after all: revised properties of Kepler M dwarf stars and their planets , 2015, 1512.04437.

[45]  Hilo,et al.  A Pan-STARRS 1 study of the relationship between wide binarity and planet occurrence in the Kepler field , 2015, 1509.04712.

[46]  D. Ciardi,et al.  INFLUENCE OF STELLAR MULTIPLICITY ON PLANET FORMATION. IV. ADAPTIVE OPTICS IMAGING OF KEPLER STARS WITH MULTIPLE TRANSITING PLANET CANDIDATES , 2015, 1510.01964.

[47]  K. Rice,et al.  SPIRAL ARMS IN GRAVITATIONALLY UNSTABLE PROTOPLANETARY DISKS AS IMAGED IN SCATTERED LIGHT , 2015, 1510.00396.

[48]  Charles A. Beichman,et al.  UNDERSTANDING THE EFFECTS OF STELLAR MULTIPLICITY ON THE DERIVED PLANET RADII FROM TRANSIT SURVEYS: IMPLICATIONS FOR KEPLER, K2, AND TESS , 2015, 1503.03516.

[49]  A. Johansen,et al.  How to form planetesimals from mm-sized chondrules and chondrule aggregates , 2015, 1501.05314.

[50]  Eric B. Bechter,et al.  FRIENDS OF HOT JUPITERS. II. NO CORRESPONDENCE BETWEEN HOT-JUPITER SPIN–ORBIT MISALIGNMENT AND THE INCIDENCE OF DIRECTLY IMAGED STELLAR COMPANIONS , 2014, 1501.00013.

[51]  Steve B. Howell,et al.  MOST SUB-ARCSECOND COMPANIONS OF KEPLER EXOPLANET CANDIDATE HOST STARS ARE GRAVITATIONALLY BOUND , 2014, 1409.1249.

[52]  Pravin Chordia,et al.  HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS , 2014, 1407.8179.

[53]  John Asher Johnson,et al.  ROBOTIC LASER ADAPTIVE OPTICS IMAGING OF 715 KEPLER EXOPLANET CANDIDATES USING ROBO-AO , 2013, 1312.4958.

[54]  S. Hinkley,et al.  FRIENDS OF HOT JUPITERS. I. A RADIAL VELOCITY SEARCH FOR MASSIVE, LONG-PERIOD COMPANIONS TO CLOSE-IN GAS GIANT PLANETS , 2013, 1312.2954.

[55]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2014, Astronomical Telescopes and Instrumentation.

[56]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[57]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[58]  D. Charbonneau,et al.  THE OCCURRENCE RATE OF SMALL PLANETS AROUND SMALL STARS , 2013, 1302.1647.

[59]  F. Fressin,et al.  THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.

[60]  Eric B. Ford,et al.  ON THE RELATIVE SIZES OF PLANETS WITHIN KEPLER MULTIPLE-CANDIDATE SYSTEMS , 2012, 1212.1859.

[61]  S. Ida,et al.  EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON SURVIVAL OF TERRESTRIAL PLANETS , 2012, 1209.1320.

[62]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[63]  Richard Alexander,et al.  THE DISPERSAL OF PROTOPLANETARY DISKS AROUND BINARY STARS , 2012, 1209.0779.

[64]  Gregory A. Feiden,et al.  REEVALUATING THE MASS–RADIUS RELATION FOR LOW-MASS, MAIN-SEQUENCE STARS , 2012, 1207.3090.

[65]  W. Farr,et al.  ON THE FORMATION OF HOT JUPITERS IN STELLAR BINARIES , 2012, 1206.3529.

[66]  Y. Alibert,et al.  Extrasolar planet population synthesis - IV. Correlations with disk metallicity, mass, and lifetime , 2012, 1201.1036.

[67]  Jie Li,et al.  Transiting circumbinary planets Kepler-34 b and Kepler-35 b , 2012, Nature.

[68]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[69]  Mark J. Pecaut,et al.  A REVISED AGE FOR UPPER SCORPIUS AND THE STAR FORMATION HISTORY AMONG THE F-TYPE MEMBERS OF THE SCORPIUS–CENTAURUS OB ASSOCIATION , 2011, 1112.1695.

[70]  Frantz Martinache,et al.  THE ROLE OF MULTIPLICITY IN DISK EVOLUTION AND PLANET FORMATION , 2011, 1109.4141.

[71]  A. Moro-martin,et al.  Debris disks as signposts of terrestrial planet formation , 2011, 1104.0007.

[72]  F. Fressin,et al.  A closely packed system of low-mass, low-density planets transiting Kepler-11 , 2011, Nature.

[73]  John Asher Johnson,et al.  ON THE LOW FALSE POSITIVE PROBABILITIES OF KEPLER PLANET CANDIDATES , 2011, 1101.5630.

[74]  Will M. Farr,et al.  Hot Jupiters from secular planet–planet interactions , 2010, Nature.

[75]  P. G. Jonker,et al.  American Astronomical Society Meeting Abstracts , 2011 .

[76]  Howard Isaacson,et al.  MODELING KEPLER TRANSIT LIGHT CURVES AS FALSE POSITIVES: REJECTION OF BLEND SCENARIOS FOR KEPLER-9, AND VALIDATION OF KEPLER-9 d, A SUPER-EARTH-SIZE PLANET IN A MULTIPLE SYSTEM , 2010, 1008.4393.

[77]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[78]  Andrei Tokovinin,et al.  SPECKLE INTERFEROMETRY AT THE BLANCO AND SOAR TELESCOPES IN 2008 AND 2009 , 2009, 0911.5718.

[79]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[80]  R. Greenberg,et al.  OBSERVATIONAL EVIDENCE FOR TIDAL DESTRUCTION OF EXOPLANETS , 2009, 0904.1170.

[81]  H. Jang-Condell,et al.  Disk Truncation and Planet Formation in γ Cephei , 2008, 0807.4472.

[82]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[83]  F. Rasio,et al.  submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 PLANETARY SYSTEMS IN BINARIES. I. DYNAMICAL CLASSIFICATION , 2022 .

[84]  E. Ford,et al.  Origins of Eccentric Extrasolar Planets: Testing the Planet-Planet Scattering Model , 2007, astro-ph/0703163.

[85]  L. Hillenbrand,et al.  The Stellar Populations of Praesepe and Coma Berenices , 2007, 0708.2719.

[86]  N. Murray,et al.  Hot Jupiters in Binary Star Systems , 2007, 0706.0732.

[87]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[88]  S. Tremaine,et al.  Dynamical Origin of Extrasolar Planet Eccentricity Distribution , 2007, astro-ph/0703160.

[89]  J. Lissauer,et al.  Terrestrial Planet Formation around Individual Stars within Binary Star Systems , 2007, astro-ph/0701266.

[90]  P. Armitage,et al.  Predictions for the correlation between giant and terrestrial extrasolar planets in dynamically evolved systems , 2006, astro-ph/0604077.

[91]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview , 2006 .

[92]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[93]  S. Tremaine,et al.  Chaotic variations in the eccentricity of the planet orbiting 16 Cygni B , 1997, Nature.

[94]  Maarten Schmidt,et al.  Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources , 1968 .