Effects of sputtering technique on quaternary sputtered Cu(In,Ga)Se2 films
暂无分享,去创建一个
Vinh Q. Nguyen | Jas S. Sanghera | Jesse A. Frantz | Jason D. Myers | Robel Y. Bekele | J. Myers | J. Sanghera | V. Nguyen | J. Frantz | R. Bekele
[1] Sumei Huang,et al. Fabrication of Cu(In, Ga)Se2 thin films by sputtering from a single quaternary chalcogenide target , 2011 .
[2] Yong Xiang,et al. Effects of Sb-doping on the grain growth of Cu(In, Ga)Se2 thin films fabricated by means of single-target sputtering , 2013 .
[3] Wen-Chieh Shih,et al. A promising sputtering route for one-step fabrication of chalcopyrite phase Cu(In,Ga)Se2 absorbers without extra Se supply , 2012 .
[4] J. S. Sanghera,et al. Characterization of Cu(In, Ga)Se2 thin films and devices sputtered from a single target without additional selenization , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.
[5] Elisabeth Chassaing,et al. Non‐vacuum methods for formation of Cu(In, Ga)(Se, S)2 thin film photovoltaic absorbers , 2010 .
[6] Omar Isaac Asensio,et al. Non-vacuum processing of CuIn1−xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks , 2003 .
[7] Makoto Konagai,et al. Fabrication of Cu(In,Ga)Se2 thin films by a combination of mechanochemical and screen‐printing/sintering processes , 2006 .
[8] Rommel Noufi,et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin‐film solar cells , 2003 .
[9] Debora Keller,et al. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. , 2013, Nature materials.
[10] Rommel Noufi,et al. A 21.5% efficient Cu(In,Ga)Se2 thin‐film concentrator solar cell , 2002 .
[11] Wei Liu,et al. A High‐Efficiency Solution‐Deposited Thin‐Film Photovoltaic Device , 2008 .
[12] D. Hariskos,et al. New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .
[13] Rommel Noufi,et al. Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin‐film solar cells , 1999 .
[14] Neelkanth G. Dhere,et al. Toward GW/year of CIGS production within the next decade , 2007 .
[15] Vinh Q. Nguyen,et al. Nucleation and Growth Behavior of Quaternary-Sputtered Copper Indium Gallium Diselenide Thin Films , 2012 .
[16] Wei Liu,et al. Hydrazine-based deposition route for device-quality CIGS films , 2009 .
[17] I. Repins,et al. 19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .
[18] Tayfun Gokmen,et al. Solution‐processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell , 2013 .
[19] James G. Mantovani,et al. Electrodeposition of CuInxGa1−xSe2 thin films , 1999 .
[20] Jesse A. Frantz,et al. Preparation and Layer-by-Layer Solution Deposition of Cu(In,Ga)O2 Nanoparticles with Conversion to Cu(In,Ga)S2 Films , 2014, PloS one.
[21] D. Hariskos,et al. Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8% , 2014 .
[22] E. Zolotoyabko,et al. Determination of the degree of preferred orientation within the March–Dollase approach , 2009 .
[23] Y. C. Chan,et al. Another route to fabricate single-phase chalcogenides by post-selenization of Cu–In–Ga precursors sputter deposited from a single ternary target , 2009 .
[24] W. Warta,et al. Solar cell efficiency tables (version 36) , 2010 .
[25] Hans Zogg,et al. CIS and CIGS layers from selenized nanoparticle precursors , 2003 .
[26] John H. Scofield,et al. Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells , 1995 .
[27] Daniel Lincot,et al. Chalcopyrite thin film solar cells by electrodeposition , 2004 .