Computational methods to identify metabolic sub‐networks based on metabolomic profiles

Abstract Untargeted metabolomics makes it possible to identify compounds that undergo significant changes in concentration in different experimental conditions. The resulting metabolomic profile characterizes the perturbation concerned, but does not explain the underlying biochemical mechanisms. Bioinformatics methods make it possible to interpret results in light of the whole metabolism. This knowledge is modelled into a network, which can be mined using algorithms that originate in graph theory. These algorithms can extract sub‐networks related to the compounds identified. Several attempts have been made to adapt them to obtain more biologically meaningful results. However, there is still no consensus on this kind of analysis of metabolic networks. This review presents the main graph approaches used to interpret metabolomic data using metabolic networks. Their advantages and drawbacks are discussed, and the impacts of their parameters are emphasized. We also provide some guidelines for relevant sub‐network extraction and also suggest a range of applications for most methods.

[1]  David Z. Chen,et al.  Automatic reaction mapping and reaction center detection , 2013 .

[2]  Nagasuma R. Chandra,et al.  Flux balance analysis of biological systems: applications and challenges , 2009, Briefings Bioinform..

[3]  Frédéric Boyer,et al.  Ab initio reconstruction of metabolic pathways , 2003, ECCB.

[4]  Mark A. Ragan,et al.  Advanced computing for systems biology , 2006, Briefings Bioinform..

[5]  Benno Schwikowski,et al.  Graph-based methods for analysing networks in cell biology , 2006, Briefings Bioinform..

[6]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[7]  Yasuo Tabei,et al.  Supervised de novo reconstruction of metabolic pathways from metabolome-scale compound sets , 2013, Bioinform..

[8]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[9]  L. Freeman,et al.  Centrality in valued graphs: A measure of betweenness based on network flow , 1991 .

[10]  Masaaki Kotera,et al.  RPAIR : a reactant-pair database representing chemical changes in enzymatic reactions , 2004 .

[11]  Leen Stougie,et al.  Telling metabolic stories to explore metabolomics data: a case study on the yeast response to cadmium exposure , 2013, Bioinform..

[12]  Lynda B. M. Ellis,et al.  The University of Minnesota pathway prediction system: predicting metabolic logic , 2008, Nucleic Acids Res..

[13]  Masanori Arita,et al.  Metabolic reconstruction using shortest paths , 2000, Simul. Pract. Theory.

[14]  Peter Willett,et al.  Similarity methods in chemoinformatics , 2009, Annu. Rev. Inf. Sci. Technol..

[15]  Michael P. Barrett,et al.  MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks , 2010, Nucleic Acids Res..

[16]  Leen Stougie,et al.  Telling stories: Enumerating maximal directed acyclic graphs with a constrained set of sources and targets , 2012, Theor. Comput. Sci..

[17]  Yves Deville,et al.  Relevant subgraph extraction from random walks in a graph , 2006 .

[18]  Faezeh Ghanati,et al.  Integrated pathway-based and network-based analysis of GC-MS rice metabolomics data under diazinon stress to infer affected biological pathways. , 2016, Analytical biochemistry.

[19]  Susumu Goto,et al.  Data, information, knowledge and principle: back to metabolism in KEGG , 2013, Nucleic Acids Res..

[20]  Peter D. Karp,et al.  Optimal metabolic route search based on atom mappings , 2014, Bioinform..

[21]  Pierre Dupont,et al.  Systems biology Advance Access publication March 12, 2010 , 2009 .

[22]  Zachary A. King,et al.  Constraint-based models predict metabolic and associated cellular functions , 2014, Nature Reviews Genetics.

[23]  O. Fiehn,et al.  Metabolite profiling for plant functional genomics , 2000, Nature Biotechnology.

[24]  Martin G. Everett,et al.  A Graph-theoretic perspective on centrality , 2006, Soc. Networks.

[25]  Sándor P. Fekete,et al.  Shortest Paths with Pairwise-Distinct Edge Labels: Finding Biochemical Pathways in Metabolic Networks , 2010, ArXiv.

[26]  Juho Rousu,et al.  BMC Systems Biology BioMed Central Methodology article , 2009 .

[27]  Gábor Iván,et al.  Equal Opportunity for Low-Degree Network Nodes: A PageRank-Based Method for Protein Target Identification in Metabolic Graphs , 2013, PloS one.

[28]  D. Kell Metabolomics and systems biology: making sense of the soup. , 2004, Current opinion in microbiology.

[29]  Yves Deville,et al.  An Overview of Data Models for the Analysis of Biochemical Pathways , 2003, CMSB.

[30]  Jonathan J. Crofts,et al.  Hypergraph models of metabolism , 2014 .

[31]  H. Ginsburg Caveat emptor: limitations of the automated reconstruction of metabolic pathways in Plasmodium. , 2009, Trends in parasitology.

[32]  Juan Carlos Nuño,et al.  METATOOL: for studying metabolic networks , 1999, Bioinform..

[33]  Yanli Wang,et al.  PubChem: Integrated Platform of Small Molecules and Biological Activities , 2008 .

[34]  Bernhard O. Palsson,et al.  Estimation of the number of extreme pathways for metabolic networks , 2007, BMC Bioinformatics.

[35]  Johan Auwerx,et al.  The metabolic footprint of aging in mice , 2011, Scientific reports.

[36]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[37]  Egon L. Willighagen,et al.  The Chemical Translation Service—a web-based tool to improve standardization of metabolomic reports , 2010, Bioinform..

[38]  Jotun Hein,et al.  Rahnuma: hypergraph-based tool for metabolic pathway prediction and network comparison , 2009, Bioinform..

[39]  Francisco J. Planes,et al.  A critical examination of stoichiometric and path-finding approaches to metabolic pathways , 2008, Briefings Bioinform..

[40]  Stephen R. Heller,et al.  InChI - the worldwide chemical structure identifier standard , 2013, Journal of Cheminformatics.

[41]  Masanori Arita The metabolic world of Escherichia coli is not small. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[42]  S. Rao,et al.  PathMiner: predicting metabolic pathways by heuristic search , 2003, Bioinform..

[43]  Melanie I. Stefan,et al.  BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models , 2010, BMC Systems Biology.

[44]  Egon L. Willighagen,et al.  The Chemistry Development Kit (CDK): An Open-Source Java Library for Chemo-and Bioinformatics , 2003, J. Chem. Inf. Comput. Sci..

[45]  M. Gerstein,et al.  Getting connected: analysis and principles of biological networks. , 2007, Genes & development.

[46]  Costas D Maranas,et al.  Microbial 1-butanol production: Identification of non-native production routes and in silico engineering interventions. , 2010, Biotechnology journal.

[47]  R. Heinrich,et al.  Metabolic Pathway Analysis: Basic Concepts and Scientific Applications in the Post‐genomic Era , 1999, Biotechnology progress.

[48]  Ludovic Cottret,et al.  Graph methods for the investigation of metabolic networks in parasitology , 2010, Parasitology.

[49]  Ronan M. T. Fleming,et al.  A community-driven global reconstruction of human metabolism , 2013, Nature Biotechnology.

[50]  Jason A. Papin,et al.  Comparison of network-based pathway analysis methods. , 2004, Trends in biotechnology.

[51]  Rainer Schrader,et al.  Metabolic pathway analysis web service (Pathway Hunter Tool at CUBIC) , 2005, Bioinform..

[52]  Pablo Carbonell,et al.  Engineering antibiotic production and overcoming bacterial resistance , 2011, Biotechnology journal.

[53]  Douglas L. Brutlag,et al.  Remote homology detection: a motif based approach , 2003, ISMB.

[54]  Ludovic Cottret,et al.  An Introduction to Metabolic Networks and Their Structural Analysis , 2008, IEEE ACM Trans. Comput. Biol. Bioinform..

[55]  Mark E. J. Newman A measure of betweenness centrality based on random walks , 2005, Soc. Networks.

[56]  Johann Gasteiger,et al.  Fingal: A Novel Approach to Geometric Fingerprinting and a Comparative Study of Its Application to 3D‐QSAR Modelling , 2005 .

[57]  Thomas Lengauer,et al.  Pathway analysis in metabolic databases via differetial metabolic display (DMD) , 2000, German Conference on Bioinformatics.

[58]  S. Wodak,et al.  Graph-based analysis of metabolic networks. , 2002, Ernst Schering Research Foundation workshop.

[59]  Susumu Goto,et al.  PathPred: an enzyme-catalyzed metabolic pathway prediction server , 2010, Nucleic Acids Res..

[60]  Jacques van Helden,et al.  Prediction of metabolic pathways from genome-scale metabolic networks , 2011, Biosyst..

[61]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[62]  H. Pollak,et al.  Steiner Minimal Trees , 1968 .

[63]  Petter Holme,et al.  Model validation of simple-graph representations of metabolism , 2008, Journal of The Royal Society Interface.

[64]  Frederick P. Roth,et al.  Chemical substructures that enrich for biological activity , 2008, Bioinform..

[65]  Dieter Jungnickel,et al.  Graphs, Networks, and Algorithms , 1980 .

[66]  Zhengdong D. Zhang,et al.  SubNet: a Java application for subnetwork extraction , 2013, Bioinform..

[67]  D. Fell,et al.  The small world of metabolism , 2000, Nature Biotechnology.

[68]  An-Ping Zeng,et al.  Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms , 2003, Bioinform..

[69]  P. Suñé,et al.  Positive Outcomes Influence the Rate and Time to Publication, but Not the Impact Factor of Publications of Clinical Trial Results , 2013, PloS one.

[70]  Thomas Bernard,et al.  Reconciliation of metabolites and biochemical reactions for metabolic networks , 2012, Briefings Bioinform..

[71]  F. Hwang,et al.  The Steiner Tree Problem , 2012 .

[72]  Yves Deville,et al.  NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways , 2008, Nucleic Acids Res..

[73]  U. Sauer,et al.  Biological insights through nontargeted metabolomics. , 2015, Current opinion in biotechnology.

[74]  Francisco J. Planes,et al.  Path finding methods accounting for stoichiometry in metabolic networks , 2011, Genome Biology.

[75]  Nicolas Le Novère,et al.  BioModels linked dataset , 2014, BMC Systems Biology.

[76]  A. Pan,et al.  Identification of potential drug targets in Yersinia pestis using metabolic pathway analysis: MurE ligase as a case study. , 2012, European journal of medicinal chemistry.

[77]  R. Burt The Social Structure of Competition , 2004 .

[78]  P. Karp,et al.  Computational prediction of human metabolic pathways from the complete human genome , 2004, Genome Biology.

[79]  Peter D. Karp,et al.  EcoCyc: fusing model organism databases with systems biology , 2012, Nucleic Acids Res..

[80]  H. Pearson Meet the human metabolome , 2007, Nature.

[81]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[82]  David S. Wishart,et al.  Bioinformatics Applications Note Systems Biology Metpa: a Web-based Metabolomics Tool for Pathway Analysis and Visualization , 2022 .

[83]  Nigel W. Hardy,et al.  Proposed minimum reporting standards for chemical analysis , 2007, Metabolomics.

[84]  David S. Wishart,et al.  MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data , 2010, Nucleic Acids Res..

[85]  Masanori Arita In silico atomic tracing by substrate-product relationships in Escherichia coli intermediary metabolism. , 2003, Genome research.

[86]  Laurent Debrauwer,et al.  Use of reconstituted metabolic networks to assist in metabolomic data visualization and mining , 2010, Metabolomics.

[87]  S. Wodak,et al.  Inferring meaningful pathways in weighted metabolic networks. , 2006, Journal of molecular biology.

[88]  Karoline Faust,et al.  Predicting metabolic pathways by sub-network extraction. , 2012, Methods in molecular biology.

[89]  D. Kell,et al.  A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations , 2001, Nature Biotechnology.

[90]  David R. Gilbert,et al.  MetaNetter: inference and visualization of high-resolution metabolomic networks , 2008, Bioinform..

[91]  Wolfgang Wiechert,et al.  Visualizing multi-omics data in metabolic networks with the software Omix - A case study , 2011, Biosyst..

[92]  Oliver Kohlbacher,et al.  MetaRoute: fast search for relevant metabolic routes for interactive network navigation and visualization , 2008, Bioinform..

[93]  Stefan Schuster,et al.  Systems biology Metatool 5.0: fast and flexible elementary modes analysis , 2006 .

[94]  Linda J. Broadbelt,et al.  Efficient searching and annotation of metabolic networks using chemical similarity , 2015, Bioinform..

[95]  George Papadatos,et al.  ChEMBL web services: streamlining access to drug discovery data and utilities , 2015, Nucleic Acids Res..

[96]  Dana S. Richards,et al.  Steiner tree problems , 1992, Networks.

[97]  Jason A. Papin,et al.  Applications of genome-scale metabolic reconstructions , 2009, Molecular systems biology.

[98]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[99]  Kim Sneppen,et al.  Pathway identification by network pruning in the metabolic network of Escherichia coli , 2009, Bioinform..

[100]  Dietmar Schomburg,et al.  Observing local and global properties of metabolic pathways: "load points" and "choke points" in the metabolic networks , 2006, Bioinform..

[101]  J. van Helden,et al.  Metabolic pathfinding using RPAIR annotation. , 2009, Journal of molecular biology.

[102]  David Eppstein,et al.  Finding the k shortest paths , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[103]  Simon Rogers,et al.  Probabilistic assignment of formulas to mass peaks in metabolomics experiments , 2009, Bioinform..

[104]  J. Y. Yen,et al.  Finding the K Shortest Loopless Paths in a Network , 2007 .

[105]  Peter D. Karp,et al.  The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases , 2007, Nucleic Acids Res..

[106]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010 .

[107]  M. Kanehisa,et al.  A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters. , 2000, Nucleic acids research.

[108]  D. Perumal,et al.  A Comparative Study of Metabolic Network Topology between a Pathogenic and a Non-Pathogenic Bacterium for Potential Drug Target Identification , 2009, Summit on translational bioinformatics.

[109]  O. Fiehn,et al.  Patterns of Metabolite Changes Identified from Large-Scale Gene Perturbations in Arabidopsis Using a Genome-Scale Metabolic Network1[OPEN] , 2015, Plant Physiology.

[110]  Reinhard Schneider,et al.  Using graph theory to analyze biological networks , 2011, BioData Mining.

[111]  J. Lindon,et al.  'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. , 1999, Xenobiotica; the fate of foreign compounds in biological systems.

[112]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[113]  W. Mackaness,et al.  Use of Graph Theory to Support Map Generalization , 1993 .

[114]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[115]  C. Mu,et al.  Metabolomic analysis reveals distinct profiles in the plasma and urine of rats fed a high-protein diet , 2015, Amino Acids.

[116]  Emma L. Schymanski,et al.  Metabolite identification: are you sure? And how do your peers gauge your confidence? , 2014, Metabolomics.

[117]  Douglas J. Klein,et al.  Centrality measure in graphs , 2010 .

[118]  Jérôme Callut,et al.  First passage times dynamics in Markov Models with applications to HMM : induction, sequence classification and graph mining , 2007 .

[119]  S. Schuster,et al.  ON ELEMENTARY FLUX MODES IN BIOCHEMICAL REACTION SYSTEMS AT STEADY STATE , 1994 .

[120]  Junfeng Xia,et al.  Identification of Colorectal Cancer Candidate Genes Based on Subnetwork Extraction Algorithm , 2015, ICIC.

[121]  Oliver Fiehn,et al.  MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity , 2012, BMC Bioinformatics.

[122]  Steffen Klamt,et al.  Hypergraphs and Cellular Networks , 2009, PLoS Comput. Biol..

[123]  Emilien L. Jamin,et al.  ProbMetab : an R package for Bayesian probabilistic annotation of LC-MS based metabolomics , 2013 .

[124]  Oliver Kohlbacher,et al.  Using Atom Mapping Rules for an Improved Detection of Relevant Routes in Weighted Metabolic Networks , 2008, J. Comput. Biol..

[125]  Shoshana J. Wodak,et al.  Metabolic PathFinding: inferring relevant pathways in biochemical networks , 2005, Nucleic Acids Res..