A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures

[1]  K. Okada,et al.  MOF-on-MOF: Oriented Growth of Multiple Layered Thin Films of Metal-Organic Frameworks. , 2019, Angewandte Chemie.

[2]  H. Park,et al.  Rational Design of Carbon Nanomaterials for Electrochemical Sodium Storage and Capture , 2019, Advanced materials.

[3]  Fangxi Xie,et al.  Graphitic Carbon Nitride (g‐C3N4)‐Derived N‐Rich Graphene with Tuneable Interlayer Distance as a High‐Rate Anode for Sodium‐Ion Batteries , 2019, Advanced materials.

[4]  Kun Rui,et al.  Stereoselectively Assembled Metal-Organic Framework (MOF) Host for Catalytic Synthesis of Carbon Hybrids for Alkaline-Metal-Ion Batteries. , 2019, Angewandte Chemie.

[5]  G. Stucky,et al.  Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries , 2019, Nano Energy.

[6]  Peng Wang,et al.  Fabrication of Desired Metal–Organic Frameworks via Postsynthetic Exchange and Sequential Linker Installation , 2019, Crystal Growth & Design.

[7]  H. Pang,et al.  Applications of Metal–Organic‐Framework‐Derived Carbon Materials , 2018, Advanced materials.

[8]  Song Gao,et al.  Ultrafast Sodium/Potassium‐Ion Intercalation into Hierarchically Porous Thin Carbon Shells , 2018, Advanced materials.

[9]  K. Okada,et al.  Oriented growth of multiple layered thin films of metal-organic frameworks (MOF-on-MOF) , 2019 .

[10]  L. Mai,et al.  Defect‐Rich Soft Carbon Porous Nanosheets for Fast and High‐Capacity Sodium‐Ion Storage , 2018, Advanced Energy Materials.

[11]  Huan Pang,et al.  Metal-organic frameworks for direct electrochemical applications , 2018, Coordination Chemistry Reviews.

[12]  Christopher A. Trickett,et al.  Identification of the strong Brønsted acid site in a metal–organic framework solid acid catalyst , 2018, Nature Chemistry.

[13]  R. Krishna,et al.  Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites , 2018, Science.

[14]  H. Hou,et al.  Modulation of Magnetic Behavior and Hg2+ Removal by Solvent-Assisted Linker Exchange Based on a Water-Stable 3D MOF , 2018, Chemistry of Materials.

[15]  Jiangyan Wang,et al.  Sequential Templating Approach: A Groundbreaking Strategy to Create Hollow Multishelled Structures , 2018, Advanced materials.

[16]  Guowu Zhan,et al.  Hydrogen spillover through Matryoshka-type (ZIFs@)n−1ZIFs nanocubes , 2018, Nature Communications.

[17]  Prodromos Daoutidis,et al.  Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 1018 eV , 2017, Science.

[18]  R. Fischer,et al.  Defective Metal‐Organic Frameworks , 2018, Advanced materials.

[19]  Huaihe Song,et al.  2D Zn‐Hexamine Coordination Frameworks and Their Derived N‐Rich Porous Carbon Nanosheets for Ultrafast Sodium Storage , 2018 .

[20]  Jian Zhu,et al.  Nitrogen‐Doped Wrinkled Carbon Foils Derived from MOF Nanosheets for Superior Sodium Storage , 2018, Advanced Energy Materials.

[21]  Krista S. Walton,et al.  Acid Gas Stability of Zeolitic Imidazolate Frameworks: Generalized Kinetic and Thermodynamic Characteristics , 2018, Chemistry of Materials.

[22]  Christopher W. Foster,et al.  Advanced Hierarchical Vesicular Carbon Co‐Doped with S, P, N for High‐Rate Sodium Storage , 2018, Advanced science.

[23]  R. E. Schaak,et al.  Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries , 2018, Science.

[24]  Jiujun Zhang,et al.  N‐Doping and Defective Nanographitic Domain Coupled Hard Carbon Nanoshells for High Performance Lithium/Sodium Storage , 2018 .

[25]  Peng Lu,et al.  3D Amorphous Carbon with Controlled Porous and Disordered Structures as a High‐Rate Anode Material for Sodium‐Ion Batteries , 2018 .

[26]  Huaihe Song,et al.  Tailoring Highly N-Doped Carbon Materials from Hexamine-Based MOFs: Superior Performance and New Insight into the Roles of N Configurations in Na-Ion Storage. , 2018, Small.

[27]  H. Abruña,et al.  Solvothermal‐Derived S‐Doped Graphene as an Anode Material for Sodium‐Ion Batteries , 2018, Advanced science.

[28]  M. Antonietti,et al.  Morphogenesis of Metal-Organic Mesocrystals Mediated by Double Hydrophilic Block Copolymers. , 2018, Journal of the American Chemical Society.

[29]  R. Luque,et al.  Ordered macro-microporous metal-organic framework single crystals , 2018, Science.

[30]  Zhenan Bao,et al.  Robust and conductive two-dimensional metal−organic frameworks with exceptionally high volumetric and areal capacitance , 2018, Nature Energy.

[31]  Shaobin Wang,et al.  Title Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis , 2018 .

[32]  Yi‐nan Wu,et al.  Controllable Modular Growth of Hierarchical MOF-on-MOF Architectures. , 2017, Angewandte Chemie.

[33]  Xiaobo Ji,et al.  3D hollow porous carbon microspheres derived from Mn-MOFs and their electrochemical behavior for sodium storage , 2017 .

[34]  Huanting Wang,et al.  A general route to the synthesis of layer-by-layer structured metal organic framework/graphene oxide hybrid films for high-performance supercapacitor electrodes , 2017 .

[35]  Wei Lu,et al.  Nitrogen-Doped Carbon for Sodium-Ion Battery Anode by Self-Etching and Graphitization of Bimetallic MOF-Based Composite , 2017 .

[36]  F. Huo,et al.  Multi-shelled Hollow Metal-Organic Frameworks. , 2017, Angewandte Chemie.

[37]  A. Manthiram,et al.  1D Co‐ and N‐Doped Hierarchically Porous Carbon Nanotubes Derived from Bimetallic Metal Organic Framework for Efficient Oxygen and Tri‐iodide Reduction Reactions , 2017 .

[38]  Shaobin Wang,et al.  Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc04903f Click here for additional data file. , 2017, Chemical science.

[39]  Joseph S. Elias,et al.  Conductive MOF electrodes for stable supercapacitors with high areal capacitance. , 2017, Nature materials.

[40]  L. James Wright,et al.  Cover Picture: A Metallaanthracene and Derived Metallaanthraquinone (Angew. Chem. Int. Ed. 1/2017) , 2017 .

[41]  Zhiyong Tang,et al.  Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution , 2016, Nature Energy.

[42]  L. Gu,et al.  Metal–organic frameworks as selectivity regulators for hydrogenation reactions , 2016, Nature.

[43]  Zhiqun Lin,et al.  1D nanocrystals with precisely controlled dimensions, compositions, and architectures , 2016, Science.

[44]  Huanting Wang,et al.  Decorating nanoporous ZIF-67-derived NiCo2O4 shells on a Co3O4 nanowire array core for battery-type electrodes with enhanced energy storage performance , 2016 .

[45]  Guang Lu,et al.  Synthesis of ZIF-8 Hollow Spheres via MOF-to-MOF Conversion , 2016 .

[46]  Hua Zhang,et al.  Synthesis of Two-Dimensional CoS1.097/Nitrogen-Doped Carbon Nanocomposites Using Metal-Organic Framework Nanosheets as Precursors for Supercapacitor Application. , 2016, Journal of the American Chemical Society.

[47]  Xiaobo Ji,et al.  Cube-shaped Porous Carbon Derived from MOF-5 as Advanced Material for Sodium-Ion Batteries , 2016 .

[48]  Lei Zhang,et al.  Free‐Standing Nitrogen‐Doped Carbon Nanofiber Films: Integrated Electrodes for Sodium‐Ion Batteries with Ultralong Cycle Life and Superior Rate Capability , 2016 .

[49]  Yan Zhang,et al.  Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium‐Ion Batteries with Ultralong Cycle Life , 2015, Advanced materials.

[50]  Lin Feng,et al.  Surfactant-Mediated Conformal Overgrowth of Core-Shell Metal-Organic Framework Materials with Mismatched Topologies. , 2015, Small.

[51]  Xun Wang,et al.  Well‐Defined Metal–Organic‐Framework Hollow Nanostructures for Catalytic Reactions Involving Gases , 2015, Advanced materials.

[52]  D. Zhao,et al.  A graphene-directed assembly route to hierarchically porous Co–Nx/C catalysts for high-performance oxygen reduction , 2015 .

[53]  R. Fischer,et al.  Defect-Engineered Metal–Organic Frameworks , 2015, Angewandte Chemie.

[54]  Jihye Park,et al.  Structure-assisted functional anchor implantation in robust metal-organic frameworks with ultralarge pores. , 2015, Journal of the American Chemical Society.

[55]  Jun Wang,et al.  ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. , 2014, Angewandte Chemie.

[56]  Omar K Farha,et al.  Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement. , 2014, Chemical Society reviews.

[57]  Kai He,et al.  Expanded graphite as superior anode for sodium-ion batteries , 2014, Nature Communications.

[58]  H. Hou,et al.  New mechanistic insight into stepwise metal-center exchange in a metal-organic framework based on asymmetric Zn(4) clusters. , 2014, Chemistry.

[59]  Dieter Söll,et al.  Cover Picture: Recoding the Genetic Code with Selenocysteine (Angew. Chem. Int. Ed. 1/2014) , 2014 .

[60]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[61]  Nathaniel L Rosi,et al.  Design and preparation of a core-shell metal-organic framework for selective CO2 capture. , 2013, Journal of the American Chemical Society.

[62]  Kari Rissanen,et al.  X-ray analysis on the nanogram to microgram scale using porous complexes , 2013, Nature.

[63]  Jun Liu,et al.  Sodium ion insertion in hollow carbon nanowires for battery applications. , 2012, Nano letters.

[64]  J. Long,et al.  High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites , 2011 .

[65]  M. Roeffaers,et al.  Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability , 2011, Nature Chemistry.

[66]  Z. Lai,et al.  Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. , 2011, Chemical communications.

[67]  A. Benin,et al.  Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. , 2009, Journal of the American Chemical Society.

[68]  A. Matzger,et al.  Selective metal substitution for the preparation of heterobimetallic microporous coordination polymers. , 2008, Inorganic chemistry.

[69]  M. Eddaoudi,et al.  Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. , 2005, Journal of the American Chemical Society.

[70]  C. Roberts,et al.  Anion exchange in co-ordination polymers: A solid-state or a solvent-mediated process? , 2002 .

[71]  Brian E. Conway,et al.  Behavior of Molybdenum Nitrides as Materials for Electrochemical Capacitors Comparison with Ruthenium Oxide , 1998 .

[72]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films , 1997 .

[73]  T. Groy,et al.  Construction of Porous Solids from Hydrogen-Bonded Metal Complexes of 1,3,5-Benzenetricarboxylic Acid , 1996 .

[74]  W. Klemm,et al.  Über einige neuere Ergebnisse der anorganischen Chemie , 1943 .