Cross-borehole electromagnetic probing to locate high-contrast anomalies

Electromagnetic (EM) probing between boreholes is useful for locating high‐contrast geophysical anomalies such as a tunnel. Theoretical and experimental studies of EM field interaction with a tunnel show that minima in the received signal can be used for locating the tunnel. The theoretical studies show that as a transmitter and receiver are lowered in separate boreholes, the minima can be interpreted easily to yield both the lateral and vertical positions of the tunnel. The main mechanism of EM field interaction with the tunnel appears to be diffraction, and the spatial variation of the field strength is affected by the tunnel shape. Frequencies from 10 to 70 MHz were studied to assess the usable frequencies. The field in the receiver borehole was an effective diagnostic when a half‐wavelength in the surrounding medium was less than or equal to the diameter of the tunnel. EM probing at two test sites gave the locations of tunnels within 1 ft of the surveyed locations.