Classifying and detecting group behaviour from visual surveillance data

We outline an approach to classifying and detecting behaviours from surveillance data. Simple pairwise movement patterns are learned and used as building blocks to describe behaviour over a temporal sequence, or compared with other pairs to detect group behaviour. As the pair primitives are easy to redefine and learn, and complex behaviour over time is specified by the user as a sequence of pair primitives, this approach provides a flexible yet robust method of detecting complex movement in a wide variety of domains.