A method for obtaining three-dimensional computational equilibrium of non-neutral plasmas using WARP

HIFAN 1580 A Method for Obtaining Three Dimensional Computational Equilibrium of Non-Neutral Plasmas Using WARP K. Gomberoff and J. Wurtele Center for Beam Physics, Lawrence Berkeley National Laboratory and Department of Physics, UC Berkeley Berkeley CA 94720 A. Friedman and D. P. Grote Fusion Energy Program, Lawrence Livermore National Laboratory Livermore, CA 94550 J-L. Vay Lawrence Berkeley National Laboratory Berkeley CA 94720 Accelerator Fusion Research Division Ernest Orlando Lawrence Berkeley National Laboratory University of California Berkeley, California 94720 January 2007 This work has been supported by US DOE division of High Energy Physics, Grant number: DE-FG02- 04ER41289. This work has been supported by US DOE division of High Energy Physics, Grant No. DE-FG02-04ER41289 and was partially supported by the ISF (Isreal). This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

[1]  J. Fajans Non-neutral plasma equilibria, trapping, separatrices, and separatrix crossing in magnetic mirrors , 2003 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  J. Fajans Simulations of plasma confinement in an antihydrogen trap , 2007 .

[4]  J. Fajans,et al.  Effects of extreme magnetic quadrupole fields on penning traps and the consequences for antihydrogen trapping. , 2005, Physical review letters.

[5]  J. Denavit,et al.  Stability of field‐reversed ion rings , 1986 .

[6]  J. Denavit,et al.  Strong ion ring equilibria formed by injection and intrinsic stochasticity of orbits , 1981 .

[7]  J. Fajans,et al.  A magnetic trap for antihydrogen confinement , 2006 .

[8]  J. Wurtele,et al.  Simulation studies of non-neutral plasma equilibria in an electrostatic trap with a magnetic mirror , 2007 .

[9]  T. M. O'Neil,et al.  Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states) , 1999 .

[10]  J. Fajans,et al.  Malmberg¿Penning and Minimum-B trap compatibility: the advantages of higher-order multipole traps , 2004 .

[11]  R. Cohen,et al.  Simulating electron clouds in heavy-ion accelerators , 2005 .

[12]  A. Drobot,et al.  Equilibrium and stability of mirror‐confined nonneutral E layers , 1973 .

[13]  D. Grote,et al.  The WARP Code: Modeling High Intensity Ion Beams , 2005 .

[14]  T. M. O'Neil,et al.  Finite length thermal equilibria of a pure electron plasma column , 1979 .

[15]  T. M. O'Neil,et al.  Transport to thermal equilibrium of a pure electron plasma , 1979 .

[16]  A. Fontana,et al.  Production and detection of cold antihydrogen atoms , 2002, Nature.

[17]  J. Wurtele,et al.  Antimatter plasmas in a multipole trap for antihydrogen. , 2007, Physical review letters.

[18]  Gianni Coppa,et al.  Particle-in-cell method for parallel dynamics in magnetized electron plasmas: Study of high-amplitude BGK modes , 2006, J. Comput. Phys..

[19]  C. Driscoll,et al.  Trapped-particle modes and asymmetry-induced transport in single-species plasmas. , 2002, Physical review letters.

[20]  ALPHA Collaboration , 1999 .

[21]  E. A. Hessels,et al.  Background-free observation of cold antihydrogen with field-ionization analysis of its states. , 2002, Physical review letters.