Semantic and Syntactic Approaches to Simulation Relations
暂无分享,去创建一个
Donald Sannella | Jo Erskine Hannay | Shin-ya Katsumata | D. Sannella | J. Hannay | Shin-ya Katsumata
[1] Andre Scedrov,et al. Functorial Polymorphism , 1990, Theor. Comput. Sci..
[2] John C. Reynolds,et al. Towards a theory of type structure , 1974, Symposium on Programming.
[3] John C. Mitchell,et al. Foundations for programming languages , 1996, Foundation of computing series.
[4] Jo Erskine Hannay. Specification Refinement with System F , 1999, CSL.
[5] J. Hannay,et al. Abstraction Barriers and Refinement in the Polymorphic Lambda Calculus , 2001 .
[6] Robin Milner,et al. On Observing Nondeterminism and Concurrency , 1980, ICALP.
[7] J. Girard. Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .
[8] R. D. Tennent. Correctness of data representations in Algol-like languages , 1994 .
[9] Shin-ya Katsumata. Behavioural Equivalence and Indistinguishability in Higher-Order Typed Languages , 2002, WADT.
[10] Martin Hofmann,et al. On Behavioural Abstraction and Behavioural Satisfaction in Higher-Order Logic , 1995, Theor. Comput. Sci..
[11] John C. Mitchell,et al. Abstract types have existential types , 1985, POPL.
[12] Izumi Takeuti. An Axiomatic System of Parametricity , 1998, Fundam. Informaticae.
[13] Hans Leiß. Second-Order Pre-Logical Relations and Representation Independence , 2001, TLCA.
[14] Martin Wirsing,et al. Behavioural and Abstractor Specifications , 1995, Sci. Comput. Program..
[15] John C. Mitchell,et al. The Semantics of Second-Order Lambda Calculus , 1990, Inf. Comput..
[16] Philip Wadler,et al. A Syntax for Linear Logic , 1993, MFPS.
[17] John C. Reynolds,et al. The craft of programming , 1981, Prentice Hall International series in computer science.
[18] Alex K. Simpson,et al. Computational Adequacy in an Elementary Topos , 1998, CSL.
[19] Benjamin C. Pierce,et al. Theoretical Aspects of Computer Software , 2001, Lecture Notes in Computer Science.
[20] Furio Honsell,et al. Constructive Data Refinement in Typed Lambda Calculus , 2000, FoSSaCS.
[21] Edmund Robinson,et al. Reflexive graphs and parametric polymorphism , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.
[22] Martín Abadi,et al. A Model for Formal Parametric Polymorphism: A PER Interpretation for System R , 1995, TLCA.
[23] Corrado Böhm,et al. Automatic Synthesis of Typed Lambda-Programs on Term Algebras , 1985, Theor. Comput. Sci..
[24] C. A. R. Hoare,et al. Proof of correctness of data representations , 1972, Acta Informatica.
[25] D. Sannella,et al. Prelogical relations , 2002 .
[26] Martín Abadi,et al. A Logic for Parametric Polymorphism , 1993, TLCA.
[27] John C. Reynolds,et al. Types, Abstractions, and Parametric Polymorphism, Part 2 , 1991, MFPS.
[28] Christopher Strachey,et al. Fundamental Concepts in Programming Languages , 2000, High. Order Symb. Comput..
[29] Robin Milner,et al. An Algebraic Definition of Simulation Between Programs , 1971, IJCAI.
[30] Ryu Hasegawa. Parametricity of Extensionally Collapsed Term Models of Polymorphism and Their Categorical Properties , 1991, TACS.
[31] Jo Erskine Hannay. Abstraction Barrier-Observing Relational Parametricity , 2003, TLCA.
[32] John C. Reynolds,et al. Types, Abstraction and Parametric Polymorphism , 1983, IFIP Congress.
[33] Harry G. Mairson. Outline of a Proof Theory of Parametricity , 1991, FPCA.
[34] Donald Sannella,et al. Essential concepts of algebraic specification and program development , 1997, Formal Aspects of Computing.
[35] Oliver Schoett,et al. Behavioural Correctness of Data Representations , 1990, Sci. Comput. Program..
[36] Gordon D. Plotkin,et al. Lax Logical Relations , 2000, ICALP.
[37] Jo Erskine Hannay. A Higher-Order Simulation Relation for System F , 2000, FoSSaCS.
[38] J. Girard,et al. Proofs and types , 1989 .
[39] Hans Leib. Second-order pre-logical relations and representation independence , 2001 .