Vertical-likelihood Monte Carlo

In this review, we address the use of Monte Carlo methods for approximating definite integrals of the form $Z = \int L(x) d P(x)$, where $L$ is a target function (often a likelihood) and $P$ a finite measure. We present vertical-likelihood Monte Carlo, which is an approach for designing the importance function $g(x)$ used in importance sampling. Our approach exploits a duality between two random variables: the random draw $X \sim g$, and the corresponding random likelihood ordinate $Y\equiv L(X)$ of the draw. It is natural to specify $g(x)$ and ask: what is the the implied distribution of $Y$? In this paper, we take up the opposite question: what should the distribution of $Y$ be so that the implied importance function $g(x)$ is good for approximating $Z$? Our answer turns out to unite seven seemingly disparate classes of algorithms under the vertical-likelihood perspective: importance sampling, slice sampling, simulated annealing/tempering, the harmonic-mean estimator, the vertical-density sampler, nested sampling, and energy-level sampling (a suite of related methods from statistical physics). In particular, we give an alterate presentation of nested sampling, paying special attention to the connection between this method and the vertical-likelihood perspective articulated here. As an alternative to nested sampling, we describe an MCMC method based on re-weighted slice sampling. This method's convergence properties are studied, and two examples demonstrate the promise of the overall approach.

[1]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[2]  James G. Scott,et al.  Bayesian Inference for Logistic Models Using Pólya–Gamma Latent Variables , 2012, 1205.0310.

[3]  Scott C. Schmidler,et al.  α-Stable Limit Laws for Harmonic Mean Estimators of Marginal Likelihoods , 2012 .

[4]  Arnaud Doucet,et al.  An Adaptive Interacting Wang–Landau Algorithm for Automatic Density Exploration , 2011, 1109.3829.

[5]  Brendon J. Brewer,et al.  Diffusive nested sampling , 2009, Stat. Comput..

[6]  C. Robert,et al.  Properties of nested sampling , 2008, 0801.3887.

[7]  A. Pettitt,et al.  Marginal likelihood estimation via power posteriors , 2008 .

[8]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[9]  James G. Scott,et al.  An exploration of aspects of Bayesian multiple testing , 2006 .

[10]  M. Newton,et al.  Estimating the Integrated Likelihood via Posterior Simulation Using the Harmonic Mean Identity , 2006 .

[11]  Marvin D. Troutt,et al.  Vertical Density Representation And Its Applications , 2004 .

[12]  D. Landau,et al.  Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  D. Landau,et al.  Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.

[14]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[15]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[16]  D. Dittmar Slice Sampling , 2000 .

[17]  J. Rosenthal,et al.  Convergence of Slice Sampler Markov Chains , 1999 .

[18]  D. Higdon Auxiliary Variable Methods for Markov Chain Monte Carlo with Applications , 1998 .

[19]  Xiao-Li Meng,et al.  Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .

[20]  Xiao-Li Meng,et al.  SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION , 1996 .

[21]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[22]  Hesselbo,et al.  Monte Carlo simulation and global optimization without parameters. , 1995, Physical review letters.

[23]  C. Robert The Bayesian choice , 1994 .

[24]  M. Newton Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .

[25]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[26]  Marvin D. Troutt Vertical density representation and a further remark on the box-muller method , 1993 .

[27]  B. Berg,et al.  Multicanonical algorithms for first order phase transitions , 1991 .

[28]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[29]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[30]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[31]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[32]  Luc Devroye,et al.  Methods for generating random variates with Polya characteristic functions , 1984 .

[33]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[34]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.