Synthesis and structures of o-phenylene-bridged Cp/phosphinoamide titanium complexes

[1]  Taisuke Matsumoto,et al.  Titanium(IV) phosphinoamide as a unique bidentate ligand for late transition metals II: TiRu heterobimetallics bearing a bridging chlorine atom , 2006 .

[2]  M. Fujiki,et al.  Notable norbornene (NBE) incorporation in ethylene-NBE copolymerization catalysed by nonbridged half-titanocenes: better correlation between NBE incorporation and coordination energy. , 2006, Chemical communications.

[3]  S. Kang,et al.  o-Phenylene-Bridged Cp/Amido Titanium Complexes for Ethylene/1-Hexene Copolymerizations , 2006 .

[4]  Yukihiro Motoyama,et al.  Dynamic Titanium Phosphinoamides as Unique Bidentate Phosphorus Ligands for Platinum , 2006 .

[5]  Zhaofu Fei,et al.  The chemistry of phosphinoamides and related compounds , 2005 .

[6]  H. Alt Self-immobilizing catalysts and cocatalysts for olefin polymerization. , 2005, Dalton transactions.

[7]  R. Fröhlich,et al.  Synthesis, structural features, and formation of organometallic derivates of C1-bridged Cp/amido titanium and zirconium CpCN-constrained geometry systems , 2005 .

[8]  Stephen A. Miller,et al.  Unprecedented syndioselectivity and syndiotactic polyolefin melting temperature: polypropylene and poly(4-methyl-1-pentene) from a highly active, sterically expanded eta1-fluorenyl-eta1-amido zirconium complex. , 2005, Journal of the American Chemical Society.

[9]  Jing Sun,et al.  Synthesis, structure and ethylene polymerization behavior of titanium phosphinoamide complexes , 2005 .

[10]  Wei Wang,et al.  Copolymerization of ethylene with cyclohexene (CHE) catalyzed by nonbridged half-titanocenes containing aryloxo ligand: notable effect of both cyclopentadienyl and anionic donor ligand for efficient CHE incorporation. , 2005, Journal of the American Chemical Society.

[11]  Tae Ho Kim,et al.  sp3‐C1‐Bridged 1,3‐Me2Cp/Amido Titanium and Zirconium Complexes and Their Reactivities towards Ethylene Polymerization , 2004 .

[12]  Jie Sun,et al.  Synthesis and Characterization of Novel Tridentate [NOP] Titanium Complexes and Their Application to Copolymerization and Polymerization of Ethylene , 2004 .

[13]  Nicoletta Mascellani,et al.  Heterocycle-Fused Indenyl Silyl Amido Dimethyl Titanium Complexes as Catalysts for High Molecular Weight Syndiotactic Amorphous Polypropylene , 2004 .

[14]  R. Scopelliti,et al.  Synthesis and Structural Elucidation of a “Free” Phosphinoamide Anion , 2003 .

[15]  C. De Rosa,et al.  Synthesis and characterization of high-molecular-weight syndiotactic amorphous polypropylene. , 2003, Journal of the American Chemical Society.

[16]  R. Scopelliti,et al.  Understanding structure does not always explain reactivity: a phosphinoamide anion reacts as an iminophosphide anion. , 2003, Inorganic chemistry.

[17]  V. C. Gibson,et al.  Advances in non-metallocene olefin polymerization catalysis. , 2003, Chemical reviews.

[18]  G. Erker,et al.  Structural Features of Me2Si-Bridged Cp/Phosphido Group 4 Metal Complexes, “CpSiP” Constrained-Geometry Ziegler−Natta Catalyst Precursors , 2002 .

[19]  G. Erker,et al.  Generation of homogeneous (sp(3)-C(1))-bridged Cp/amido and Cp/phosphido group 4 metal Ziegler-Natta catalyst systems. , 2001, Journal of the American Chemical Society.

[20]  K. Abboud,et al.  Heteroatom-Substituted Constrained-Geometry Complexes. Dramatic Substituent Effect on Catalyst Efficiency and Polymer Molecular Weight , 2001 .

[21]  In Su Lee,et al.  Synthesis of titanium trichloride complexes of 1,2,3-trisubstituted cyclopentadienyls and their use in styrene polymerization , 2001 .

[22]  J. H. Teuben,et al.  Ethylene-Bridged Tetramethylcyclopentadienylamide Titanium Complexes: Ligand Synthesis and Olefin Polymerization Properties† , 2000 .

[23]  E. Hey‐Hawkins,et al.  Formation of elastomeric polypropylene promoted by the dynamic complexes [TiCl2{N(PPh2)2}2] and [Zr(NPhPPh2)4] , 2000 .

[24]  T. Marks,et al.  Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure-activity relationships. , 2000, Chemical reviews.

[25]  L. Cavallo,et al.  Selectivity in propene polymerization with metallocene catalysts. , 2000, Chemical reviews.

[26]  G. Coates Precise control of polyolefin stereochemistry using single-site metal catalysts. , 2000, Chemical reviews.

[27]  H. Alt,et al.  Effect of the Nature of Metallocene Complexes of Group IV Metals on Their Performance in Catalytic Ethylene and Propylene Polymerization. , 2000, Chemical reviews.

[28]  W. Seo,et al.  Cyclopentadienyl−Hydrazido Titanium Complexes: Synthesis, Structure, Reactivity, and Catalytic Properties , 2000 .

[29]  S. Yoon,et al.  CYCLOPENTADIENYL-HYDRAZIDO TITANIUM COMPLEXES : TUNING OF COORDINATION MODES OF HYDRAZIDO LIGANDS TO THE TITANIUM CENTER , 1999 .

[30]  J. Okuda,et al.  Alkyl Complexes of Group 4 Metals Containing a Tridentate-Linked Amido−Cyclopentadienyl Ligand: Synthesis, Structure, and Reactivity Including Ethylene Polymerization Catalysis , 1998 .

[31]  R. Waymouth,et al.  Group 4 ansa-Cyclopentadienyl-Amido Catalysts for Olefin Polymerization. , 1998, Chemical reviews.

[32]  E. Niecke,et al.  SYNTHESIS AND CRYSTAL STRUCTURES OF LITHIUM SALTS OF NEW IMINOPHOSPHIDE/PHOSPHINOAMIDE ANIONS , 1997 .

[33]  J. Kupec,et al.  Application of Amine Elimination for the Efficient Preparation of Electrophilic ansa-Monocyclopentadienyl Group 4 Complexes Containing an Appended Amido Functionality. Structural Characterization of [(C5H4)SiMe2(N-t-Bu)]ZrCl2(NMe2H) , 1996 .

[34]  W. M. Davis,et al.  Preparation of Novel Titanium Complexes Bearing o-Phosphinophenol Ligands , 1996 .

[35]  David Fischer,et al.  Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts , 1995 .

[36]  P. Jutzi Fluxional .eta.1-cyclopentadienyl compounds of main-group elements , 1986 .

[37]  D. Gorenstein CHAPTER 2 – Phosphorus-31 Spin–Spin Coupling Constants: Principles and Applications , 1984 .

[38]  David G. Gorenstein,et al.  Phosphorus-31 NMR : principles and applications , 1984 .

[39]  P. Walden Stereochemie und Technik , 1925 .