Asymptotic behavior of unregularized and ridge-regularized high-dimensional robust regression estimators : rigorous results
暂无分享,去创建一个
[1] I. Ibragimov,et al. On the Composition of Unimodal Distributions , 1956 .
[2] J. Lamperti. ON CONVERGENCE OF STOCHASTIC PROCESSES , 1962 .
[3] J. Moreau. Proximité et dualité dans un espace hilbertien , 1965 .
[4] J. Cooper. TOTAL POSITIVITY, VOL. I , 1970 .
[5] P. J. Huber. The 1972 Wald Lecture Robust Statistics: A Review , 1972 .
[6] A. Baranchik. Inadmissibility of Maximum Likelihood Estimators in Some Multiple Regression Problems with Three or More Independent Variables , 1973 .
[7] P. J. Huber. Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .
[8] A. Prékopa. On logarithmic concave measures and functions , 1973 .
[9] K. Wachter. The Strong Limits of Random Matrix Spectra for Sample Matrices of Independent Elements , 1978 .
[10] B. Efron,et al. The Jackknife Estimate of Variance , 1981 .
[11] S. Portnoy. Asymptotic behavior of M-estimators of p regression parameters when p , 1985 .
[12] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[13] J. W. Silverstein. The Smallest Eigenvalue of a Large Dimensional Wishart Matrix , 1985 .
[14] Stephen Portnoy,et al. A central limit theorem applicable to robust regression estimators , 1987 .
[15] E. Mammen. Asymptotics with increasing dimension for robust regression with applications to the bootstrap , 1989 .
[16] R. Durrett. Probability: Theory and Examples , 1993 .
[17] J. W. Silverstein. Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices , 1995 .
[18] Z. Bai. METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .
[19] M. Shcherbina,et al. Rigorous Solution of the Gardner Problem , 2001, math-ph/0112003.
[20] M. Talagrand,et al. Spin Glasses: A Challenge for Mathematicians , 2003 .
[21] Donna L. Mohr,et al. Multiple Regression , 2002, Encyclopedia of Autism Spectrum Disorders.
[22] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[23] Anja Vogler,et al. An Introduction to Multivariate Statistical Analysis , 2004 .
[24] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[25] Andrea Montanari,et al. Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.
[26] Noureddine El Karoui,et al. Concentration of measure and spectra of random matrices: Applications to correlation matrices, elliptical distributions and beyond , 2009, 0912.1950.
[27] Convex Optimization in Signal Processing and Communications , 2010 .
[28] Sundeep Rangan,et al. Generalized approximate message passing for estimation with random linear mixing , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.
[29] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[30] Andrea Montanari,et al. The LASSO Risk for Gaussian Matrices , 2010, IEEE Transactions on Information Theory.
[31] P. Bickel,et al. Optimal M-estimation in high-dimensional regression , 2013, Proceedings of the National Academy of Sciences.
[32] P. Bickel,et al. On robust regression with high-dimensional predictors , 2013, Proceedings of the National Academy of Sciences.
[33] Andrea Montanari,et al. High dimensional robust M-estimation: asymptotic variance via approximate message passing , 2013, Probability Theory and Related Fields.