Prediction of the material with highest known melting point from ab initio molecular dynamics calculations

Using electronic structure calculations, we conduct an extensive investigation into the Hf-Ta-C system, which includes the compounds that have the highest melting points known to date. We identify three major chemical factors that contribute to the high melting temperatures. Based on these factors, we propose a class of materials that may possess even higher melting temperatures and explore it via efficient ab initio molecular dynamics calculations in order to identify the composition maximizing the melting point. This study demonstrates the feasibility of automated and high-throughput materials screening and discovery via ab initio calculations for the optimization of “higher-level” properties, such as melting points, whose determination requires extensive sampling of atomic configuration space.

[1]  E. Storms The Refractory carbides , 1967 .

[2]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[3]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[4]  M. Payne,et al.  Finite basis set corrections to total energy pseudopotential calculations , 1990 .

[5]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[6]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[7]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[8]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[9]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[10]  Peter T. Cummings,et al.  Quantitative comparison and optimization of methods for evaluating the chemical potential by molecular simulation , 1997 .

[11]  R. A. Andrievskii,et al.  Melting point in systems ZrC-HfC, TaC-ZrC, TaC-HfC , 1967 .

[12]  R. Beall,et al.  PREPARATION AND EVALUATION OF FUSED HAFNIUM CARBIDE , 1963 .

[13]  Axel van de Walle Simulations provide a rare look at real melting , 2014, Science.

[14]  R. V. Sara THE HAFNIUM-CARBON SYSTEM , 1965 .

[15]  E. Ma,et al.  Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. , 2013, Nature materials.

[16]  E. Opila,et al.  UHTCs: Ultra-High Temperature Ceramic Materials for Extreme Environment Applications , 2007 .

[17]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[18]  E. Jordan,et al.  Thermal Barrier Coatings for Gas-Turbine Engine Applications , 2002, Science.

[19]  P. Ettmayer,et al.  Phase equilibria in the systems TiCN, ZrCN and HfCN , 1995 .

[20]  A. van de Walle,et al.  Solid-liquid coexistence in small systems: A statistical method to calculate melting temperatures. , 2013, The Journal of chemical physics.

[21]  M. Eberhart,et al.  The origins of the similarities between late transition metals and early transition metal monocarbides , 1996 .

[22]  C. Agte,et al.  Methoden zur Reindarstellung hochschmelzender Carbide, Nitride und Boride und Beschreibung einiger ihrer Eigenschaften , 1931 .

[23]  E. C. Subbarao,et al.  Advances in Ceramics , 1981 .

[24]  J. Perepezko The Hotter the Engine, the Better , 2009, Science.

[25]  Harry Julius Emeléus,et al.  Advances in Inorganic Chemistry and Radiochemistry , 1982 .

[26]  H. Okamoto C-Hf (Carbon-Hafnium) , 2001 .

[27]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[28]  Y. Chang TERNARY PHASE EQUILIBRIA IN TRANSITION METAL-BORON-CARBON-SILICON SYSTEMS. PART 4. THERMOCHEMICAL CALCULATIONS, VOLUME 3. COMPUTATIONAL APPROACH TO THE CALCULATION OF TERNARY PHASE DIAGRAMS , 1966 .

[29]  D. P. MacDougall,et al.  A Mechanical Analyzer for the Solution of Secular Equations and the Calculation of Molecular Vibration Frequencies , 1937 .

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  M. Gillan,et al.  The melting curve of iron at the pressures of the Earth's core from ab initio calculations , 1999, Nature.

[32]  Windisch,et al.  Ternary phase equilibria in transition metal-boron-carbon-silicon systems. Part I. Related binary systems, Volume III. Systems Mo-B and W-B. Technical documentary report, 1 November 1964-1 June 1965 , 1965 .

[33]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[34]  W. E,et al.  Microscopic mechanisms of equilibrium melting of a solid , 2014, Science.

[35]  L. Kaufman Computational Thermodynamics and materials design , 2001 .

[36]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[37]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[38]  A. Kurlov,et al.  Atomic and vacancy ordering in carbide ζ-Ta4C3−x (0.28⩽x⩽0.40) and phase equilibria in the Ta–C system , 2007 .

[39]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[40]  Stephen K. Ritter,et al.  FUTURE OF METALS , 2009 .

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.