Differential Invariant Signatures and Flows in Computer Vision: A Symmetry Group Approach
暂无分享,去创建一个
[1] M. Gage. On an area-preserving evolution equation for plane curves , 1986 .
[2] S. Osher,et al. Algorithms Based on Hamilton-Jacobi Formulations , 1988 .
[3] John Oliensis. Local Reproducible Smoothing Without Shrinkage , 1993, IEEE Trans. Pattern Anal. Mach. Intell..
[4] P. Lions,et al. Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .
[5] M. Grayson. The heat equation shrinks embedded plane curves to round points , 1987 .
[6] S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .
[7] B KimiaBenjamin,et al. Shapes, shocks, and deformations I , 1995 .
[8] S. Angenent. Parabolic equations for curves on surfaces Part I. Curves with $p$-integrable curvature , 1990 .
[9] Max A. Viergever,et al. Scale and the differential structure of images , 1992, Image Vis. Comput..
[10] Jan-Olof Eklundh,et al. On the computation of a scale-space primal sketch , 1991, J. Vis. Commun. Image Represent..
[11] Ronald D. Chaney. Analytical representation of contours , 1992, Other Conferences.
[12] Jitendra Malik,et al. Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[13] T. J. Willmore,et al. Cours de géométrie différentielle locale , 1959 .
[14] Yun-Gang Chen,et al. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .
[15] P. Lions,et al. Axioms and fundamental equations of image processing , 1993 .
[16] Andrew P. Witkin,et al. Scale-Space Filtering , 1983, IJCAI.
[17] E. Cartan,et al. La théorie des groupes finis et continus et la Géométrie différentielle traitées par la méthode du repère mobile : leçons professées à la Sorbonne , 1937 .
[18] M. Gage. Curve shortening makes convex curves circular , 1984 .
[19] G. Sapiro,et al. On affine plane curve evolution , 1994 .
[20] Berthold K. P. Horn,et al. Filtering Closed Curves , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[21] S. Angenent. Parabolic equations for curves on surfaces Part II. Intersections, blow-up and generalized solutions , 1991 .
[22] David A. Forsyth,et al. Invariant Descriptors for 3D Object Recognition and Pose , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[23] W. Miller,et al. Group analysis of differential equations , 1982 .
[24] Jan J. Koenderink,et al. Solid shape , 1990 .
[25] S. Lie,et al. Classification und Integration von gewhnlichen Differentialgleichungen zwischenxy, die eine Gruppe von Transformationen gestatten: Die nachstehende Arbeit erschien zum ersten Male im Frhling 1883 im norwegischen Archiv , 1888 .
[26] M. Gage,et al. The Curve Shortening Flow , 1987 .
[27] Guillermo Sapiro,et al. Implementing continuous-scale morphology via curve evolution , 1993, Pattern Recognit..
[28] Benjamin B. Kimia,et al. On the evolution of curves via a function of curvature , 1992 .
[29] John K. Tsotsos,et al. Shape representation and recognition from curvature , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[30] Josef Grünvald,et al. Projective differential geometry of curves and ruled surfaces , 1908 .
[31] Mark L. Green,et al. The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces , 1978 .
[32] J. Smoller. Shock Waves and Reaction-Diffusion Equations , 1983 .
[33] M. Gage,et al. The heat equation shrinking convex plane curves , 1986 .
[34] Farzin Mokhtarian,et al. A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves , 1992, IEEE Trans. Pattern Anal. Mach. Intell..
[35] Guillermo Sapiro,et al. Formulating invariant heat-type curve flows , 1993, Optics & Photonics.
[36] P. Lions,et al. User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.
[37] Guillermo Sapiro,et al. Area and Length Preserving Geometric Invariant Scale-Spaces , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[38] P. Olver. Applications of Lie Groups to Differential Equations , 1986 .
[39] Achim Hummel,et al. Representations Based on Zero-Crossing in Scale-Space-M , 2018, CVPR 1986.
[40] J. Dieudonne,et al. Invariant theory, old and new , 1971 .
[41] L. Evans,et al. Motion of level sets by mean curvature. II , 1992 .
[42] Andrew P. Witkin,et al. Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[43] Y. Meyer. Wavelets and Operators , 1993 .
[44] S. Zucker,et al. Toward a computational theory of shape: an overview , 1990, eccv 1990.
[45] Olivier D. Faugeras,et al. Cartan's Moving Frame Method and Its Application to the Geometry and Evolution of Curves in the Euclidean, Affine and Projective Planes , 1993, Applications of Invariance in Computer Vision.
[46] Richard Evan Schwartz,et al. The Pentagram Map , 1992, Exp. Math..
[47] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[48] Alan L. Yuille,et al. The Creation Of Structure In Dynamic Shape , 1988, [1988 Proceedings] Second International Conference on Computer Vision.
[49] Emanuele Trucco,et al. Geometric Invariance in Computer Vision , 1995 .
[50] Alan L. Yuille,et al. Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[51] M. Grayson. Shortening embedded curves , 1989 .
[52] M. Gage,et al. An isoperimetric inequality with applications to curve shortening , 1983 .