Differential Invariant Signatures and Flows in Computer Vision: A Symmetry Group Approach

Computer vision deals with image understanding at various levels. At the low level, it addresses issues such us planar shape recognition and analysis. Some classical results on differential invariants associated to planar curves are relevant to planar object recognition under different views and partial occlusion, and recent results concerning the evolution of planar shapes under curvature controlled diffusion have found applications in geometric shape decomposition, smoothing, and analysis, as well as in other image processing applications. In this work we first give a modern approach to the theory of differential invariants, describing concepts like Lie theory, jets, and prolongations. Based on this and the theory of symmetry groups, we present a high level way of defining invariant geometric flows for a given Lie group. We then analyze in detail different subgroups of the projective group, which are of special interest for computer vision. We classify the corresponding invariant flows and show that the geometric heat flow is the simplest possible one. This uniqueness result, together with previously reported results which we review in this chapter, confirms the importance of this class of flows. Results on invariant geometric flows of surfaces are presented at the end of the chapter as well.

[1]  M. Gage On an area-preserving evolution equation for plane curves , 1986 .

[2]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[3]  John Oliensis Local Reproducible Smoothing Without Shrinkage , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[5]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[6]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[7]  B KimiaBenjamin,et al.  Shapes, shocks, and deformations I , 1995 .

[8]  S. Angenent Parabolic equations for curves on surfaces Part I. Curves with $p$-integrable curvature , 1990 .

[9]  Max A. Viergever,et al.  Scale and the differential structure of images , 1992, Image Vis. Comput..

[10]  Jan-Olof Eklundh,et al.  On the computation of a scale-space primal sketch , 1991, J. Vis. Commun. Image Represent..

[11]  Ronald D. Chaney Analytical representation of contours , 1992, Other Conferences.

[12]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  T. J. Willmore,et al.  Cours de géométrie différentielle locale , 1959 .

[14]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[15]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[16]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[17]  E. Cartan,et al.  La théorie des groupes finis et continus et la Géométrie différentielle traitées par la méthode du repère mobile : leçons professées à la Sorbonne , 1937 .

[18]  M. Gage Curve shortening makes convex curves circular , 1984 .

[19]  G. Sapiro,et al.  On affine plane curve evolution , 1994 .

[20]  Berthold K. P. Horn,et al.  Filtering Closed Curves , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  S. Angenent Parabolic equations for curves on surfaces Part II. Intersections, blow-up and generalized solutions , 1991 .

[22]  David A. Forsyth,et al.  Invariant Descriptors for 3D Object Recognition and Pose , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  W. Miller,et al.  Group analysis of differential equations , 1982 .

[24]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[25]  S. Lie,et al.  Classification und Integration von gewhnlichen Differentialgleichungen zwischenxy, die eine Gruppe von Transformationen gestatten: Die nachstehende Arbeit erschien zum ersten Male im Frhling 1883 im norwegischen Archiv , 1888 .

[26]  M. Gage,et al.  The Curve Shortening Flow , 1987 .

[27]  Guillermo Sapiro,et al.  Implementing continuous-scale morphology via curve evolution , 1993, Pattern Recognit..

[28]  Benjamin B. Kimia,et al.  On the evolution of curves via a function of curvature , 1992 .

[29]  John K. Tsotsos,et al.  Shape representation and recognition from curvature , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[30]  Josef Grünvald,et al.  Projective differential geometry of curves and ruled surfaces , 1908 .

[31]  Mark L. Green,et al.  The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces , 1978 .

[32]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[33]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[34]  Farzin Mokhtarian,et al.  A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Guillermo Sapiro,et al.  Formulating invariant heat-type curve flows , 1993, Optics & Photonics.

[36]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[37]  Guillermo Sapiro,et al.  Area and Length Preserving Geometric Invariant Scale-Spaces , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[39]  Achim Hummel,et al.  Representations Based on Zero-Crossing in Scale-Space-M , 2018, CVPR 1986.

[40]  J. Dieudonne,et al.  Invariant theory, old and new , 1971 .

[41]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[42]  Andrew P. Witkin,et al.  Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Y. Meyer Wavelets and Operators , 1993 .

[44]  S. Zucker,et al.  Toward a computational theory of shape: an overview , 1990, eccv 1990.

[45]  Olivier D. Faugeras,et al.  Cartan's Moving Frame Method and Its Application to the Geometry and Evolution of Curves in the Euclidean, Affine and Projective Planes , 1993, Applications of Invariance in Computer Vision.

[46]  Richard Evan Schwartz,et al.  The Pentagram Map , 1992, Exp. Math..

[47]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[48]  Alan L. Yuille,et al.  The Creation Of Structure In Dynamic Shape , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[49]  Emanuele Trucco,et al.  Geometric Invariance in Computer Vision , 1995 .

[50]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  M. Grayson Shortening embedded curves , 1989 .

[52]  M. Gage,et al.  An isoperimetric inequality with applications to curve shortening , 1983 .