Laguerre unitary ensembles with jump discontinuities, PDEs and the coupled Painlevé V system

[1]  P. Forrester Ja n 20 02 Application of the τ-function theory of Painlevé equations to random matrices : , 2022 .

[2]  Shuai‐Xia Xu,et al.  Gaussian unitary ensemble with jump discontinuities and the coupled Painlevé II and IV systems , 2020, Nonlinearity.

[3]  Yang Chen,et al.  Gaussian unitary ensembles with two jump discontinuities, PDEs, and the coupled Painlevé II and IV systems , 2020, Studies in Applied Mathematics.

[4]  C. Charlier,et al.  Asymptotics of Hankel determinants with a Laguerre-type or Jacobi-type potential and Fisher-Hartwig singularities , 2019, 1902.08162.

[5]  C. Charlier,et al.  Large Gap Asymptotics for Airy Kernel Determinants with Discontinuities , 2018, Communications in Mathematical Physics.

[6]  Shuai‐Xia Xu,et al.  Gaussian Unitary Ensembles with Pole Singularities Near the Soft Edge and a System of Coupled Painlevé XXXIV Equations , 2018, Annales Henri Poincaré.

[7]  C. Charlier,et al.  The generating function for the Bessel point process and a system of coupled Painlevé V equations , 2017, Random Matrices: Theory and Applications.

[8]  C. Charlier Corrigendum to: Exponential Moments and Piecewise Thinning for the Bessel Point Process , 2018, International Mathematics Research Notices.

[9]  Yang Chen,et al.  The Hankel determinant associated with a singularly perturbed Laguerre unitary ensemble , 2018, Journal of Nonlinear Mathematical Physics.

[10]  Yang Chen,et al.  Painlevé transcendents and the Hankel determinants generated by a discontinuous Gaussian weight , 2018, Mathematical Methods in the Applied Sciences.

[11]  Yang Chen,et al.  Gap Probability Distribution of the Jacobi Unitary Ensemble: An Elementary Treatment, from Finite n to Double Scaling , 2018, 1803.10954.

[12]  Yang Chen,et al.  Asymptotic gap probability distributions of the Gaussian unitary ensembles and Jacobi unitary ensembles , 2018, 1801.00521.

[13]  Dan Dai,et al.  Gap Probability at the Hard Edge for Random Matrix Ensembles with Pole Singularities in the Potential , 2017, SIAM J. Math. Anal..

[14]  Dan Dai,et al.  Tracy–Widom Distributions in Critical Unitary Random Matrix Ensembles and the Coupled Painlevé II System , 2017, Communications in Mathematical Physics.

[15]  W. Assche Orthogonal Polynomials and Painlevé Equations , 2017 .

[16]  Tom Claeys,et al.  The Generating Function for the Airy Point Process and a System of Coupled Painlevé II Equations , 2017, 1708.03481.

[17]  C. Charlier Asymptotics of Hankel determinants with a one-cut regular potential and Fisher-Hartwig singularities , 2017, 1706.03579.

[18]  S. Zohren,et al.  On the ratio probability of the smallest eigenvalues in the Laguerre unitary ensemble , 2016, 1611.00631.

[19]  Tom Claeys,et al.  Random Matrix Ensembles with Singularities and a Hierarchy of Painlevé III Equations , 2015, 1501.04475.

[20]  Matthew R. McKay,et al.  Random matrix models, double-time Painlevé equations, and wireless relaying , 2012, 1212.4048.

[21]  Yang Chen,et al.  PDEs satisfied by extreme eigenvalues distributions of GUE and LUE , 2011, 1102.0402.

[22]  Yang Chen,et al.  Painlevé III and a singular linear statistics in Hermitian random matrix ensembles, I , 2008, J. Approx. Theory.

[23]  M. Ismail,et al.  Classical and Quantum Orthogonal Polynomials in One Variable: Bibliography , 2005 .

[24]  Yang Chen,et al.  Painlevé V and the distribution function of a discontinuous linear statistic in the Laguerre unitary ensembles , 2008, 0807.4758.

[25]  A. Its,et al.  Hankel determinant and orthogonal polynomials for the Gaussian weight with a jump , 2007, 0706.3192.

[26]  Rene F. Swarttouw,et al.  Orthogonal Polynomials , 2005, Series and Products in the Development of Mathematics.

[27]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[28]  P. Forrester,et al.  Application of the τ‐function theory of Painlevé equations to random matrices: PV, PIII, the LUE, JUE, and CUE , 2002, math-ph/0201051.

[29]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[30]  Yang Chen,et al.  Ladder operators and differential equations for orthogonal polynomials , 1997 .

[31]  C. Tracy,et al.  Fredholm determinants, differential equations and matrix models , 1993, hep-th/9306042.

[32]  C. Tracy,et al.  Level spacing distributions and the Bessel kernel , 1993, hep-th/9304063.

[33]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[34]  Kazuo Okamoto Studies on the Painlevé equations II. Fifth Painlevé equation PV , 1987 .

[35]  Kazuo Okamoto Studies on the Painlevé equations , 1986 .

[36]  Michio Jimbo,et al.  Monodromy Problem and the Boundary Condition for Some Painlevé Equations , 1982 .