Neutron optical beam splitter from holographically structured nanoparticle-polymer composites.

We report a breakthrough in the search for versatile diffractive elements for cold neutrons. Nanoparticles are spatially arranged by holographical means in a photopolymer. These grating structures show remarkably efficient diffraction of cold neutrons up to about 50% for effective thicknesses of only 200   μm. They open up a profound perspective for next generation neutron-optical devices with the capability to tune or modulate the neutron diffraction efficiency.

[1]  Tasaki,et al.  Interferometer for cold neutrons using multilayer mirrors. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[2]  Romano A. Rupp,et al.  The first neutron interferometer built of holographic gratings , 1997 .

[3]  Rupp,et al.  Neutron diffraction from photoinduced gratings in a PMMA matrix. , 1990, Physical review letters.

[4]  Yasuo Tomita,et al.  Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers. , 2005, Optics letters.

[5]  Martin Fally,et al.  The photo-neutronrefractive effect , 2002, 1706.03614.

[6]  J. Gilman,et al.  Nanotechnology , 2001 .

[7]  C. Shull,et al.  Observation of Pendellösung Fringe Structure in Neutron Diffraction , 1968 .

[8]  Yasuo Tomita,et al.  Highly transparent ZrO(2) nanoparticle-dispersed acrylate photopolymers for volume holographic recording. , 2006, Optics express.

[9]  T K Gaylord,et al.  Thin and thick gratings: terminology clarification. , 1981, Applied optics.

[10]  Christian Pruner,et al.  Interferometer for cold neutrons , 2006 .

[11]  Martin Fally,et al.  Holographic scattering in photopolymer-dispersed liquid crystals , 2005 .

[12]  Yasuo Tomita,et al.  Holographic scattering in SiO2 nanoparticle-dispersed photopolymer films. , 2007, Applied optics.

[13]  Yasuo Tomita,et al.  Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films , 2002 .

[14]  H Rauch Neutron Interferometry , 1993, Compendium of Quantum Physics.

[15]  Y. Tomita,et al.  Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%. , 2004, Applied optics.

[16]  V. T. Forsyth,et al.  New sources and instrumentation for neutrons in biology. , 2008, Chemical physics.

[17]  O. Bunk,et al.  Neutron phase imaging and tomography. , 2006, Physical review letters.

[18]  Ting Xu,et al.  Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. , 2009, Nature materials.

[19]  Andrew G. Glen,et al.  APPL , 2001 .

[20]  V. Somenkov,et al.  Observation of dynamical oscillations for neutron scattering by Ge crystals using the inclination method , 1978 .

[21]  H. Kogelnik Coupled wave theory for thick hologram gratings , 1969 .

[22]  A. Zeilinger,et al.  Aharonov-Bohm and gravity experiments with the very-cold-neutron interferometer , 2000 .

[23]  Tatiana N. Smirnova,et al.  Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms , 2007 .

[24]  Yasuo Tomita,et al.  Holographic recording sensitivity enhancement of ZrO2 nanoparticle–polymer composites by hydrogen donor and acceptor agents , 2009 .

[25]  Romano A. Rupp,et al.  Study of holographic gratings in poly(methyl-2-cyanoacrylate) by neutron diffraction , 1997 .

[26]  T. Gaylord,et al.  Rigorous coupled-wave analysis of planar-grating diffraction , 1981 .

[27]  Martin Fally,et al.  Colossal light-induced refractive-index modulation for neutrons in holographic polymer-dispersed liquid crystals. , 2006, Physical review letters.

[28]  Tatiana N. Smirnova,et al.  Effective volume holographic structures based on organic–inorganic photopolymer nanocomposites , 2009 .