Inferring the Brassica rapa Interactome Using Protein–Protein Interaction Data from Arabidopsis thaliana

Following successful completion of the Brassica rapa sequencing project, the next step is to investigate functions of individual genes/proteins. For Arabidopsis thaliana, large amounts of protein–protein interaction (PPI) data are available from the major PPI databases (DBs). It is known that Brassica crop species are closely related to A. thaliana. This provides an opportunity to infer the B. rapa interactome using PPI data available from A. thaliana. In this paper, we present an inferred B. rapa interactome that is based on the A. thaliana PPI data from two resources: (i) A. thaliana PPI data from three major DBs, BioGRID, IntAct, and TAIR. (ii) ortholog-based A. thaliana PPI predictions. Linking between B. rapa and A. thaliana was accomplished in three complementary ways: (i) ortholog predictions, (ii) identification of gene duplication based on synteny and collinearity, and (iii) BLAST sequence similarity search. A complementary approach was also applied, which used known/predicted domain–domain interaction data. Specifically, since the two species are closely related, we used PPI data from A. thaliana to predict interacting domains that might be conserved between the two species. The predicted interactome was investigated for the component that contains known A. thaliana meiotic proteins to demonstrate its usability.

[1]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[2]  Gary D Bader,et al.  BMC Biology BioMed Central , 2007 .

[3]  Xin Chen,et al.  PAIR: the predicted Arabidopsis interactome resource , 2010, Nucleic Acids Res..

[4]  Guang Li,et al.  AtPID: Arabidopsis thaliana protein interactome database—an integrative platform for plant systems biology , 2007, Nucleic Acids Res..

[5]  Tanya Z. Berardini,et al.  The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools , 2011, Nucleic Acids Res..

[6]  J. Higgins,et al.  The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in Arabidopsis. , 2004, Genes & development.

[7]  Robert D. Finn,et al.  HMMER web server: interactive sequence similarity searching , 2011, Nucleic Acids Res..

[8]  Ming Chen,et al.  PRIN: a predicted rice interactome network , 2011, BMC Bioinformatics.

[9]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[10]  Sailu Yellaboina,et al.  DOMINE: a comprehensive collection of known and predicted domain-domain interactions , 2010, Nucleic Acids Res..

[11]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[12]  Gary D Bader,et al.  PSICQUIC and PSISCORE: accessing and scoring molecular interactions , 2011, Nature Methods.

[13]  P. Hurban,et al.  A newly-developed community microarray resource for transcriptome profiling in Brassica species enables the confirmation of Brassica-specific expressed sequences , 2009, BMC Plant Biology.

[14]  K. T. Nishant,et al.  A Mutation in the Putative MLH3 Endonuclease Domain Confers a Defect in Both Mismatch Repair and Meiosis in Saccharomyces cerevisiae , 2008, Genetics.

[15]  L. Chelysheva,et al.  The Interplay of RecA-related Proteins and the MND1–HOP2 Complex during Meiosis in Arabidopsis thaliana , 2007, PLoS genetics.

[16]  Pingli Lu,et al.  The transcriptome landscape of Arabidopsis male meiocytes from high-throughput sequencing: the complexity and evolution of the meiotic process. , 2011, The Plant journal : for cell and molecular biology.

[17]  J. Poulain,et al.  The genome of the mesopolyploid crop species Brassica rapa , 2011, Nature Genetics.

[18]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[19]  Henning Hermjakob,et al.  Mapping Plant Interactomes Using Literature Curated and Predicted Protein–Protein Interaction Data Sets[W] , 2010, Plant Cell.

[20]  A. Chandley Meiosis , 1991, Essentials Of Environmental Toxicology.

[21]  Gary D. Bader,et al.  An automated method for finding molecular complexes in large protein interaction networks , 2003, BMC Bioinformatics.

[22]  Hong Ma A Molecular Portrait of Arabidopsis Meiosis , 2006, The arabidopsis book.

[23]  K. Mechtler,et al.  Inter-Homolog Crossing-Over and Synapsis in Arabidopsis Meiosis Are Dependent on the Chromosome Axis Protein AtASY3 , 2012, PLoS genetics.

[24]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[25]  Zohar Itzhaki,et al.  Evolutionary conservation of domain-domain interactions , 2006, Genome Biology.

[26]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[27]  Rafael C. Jimenez,et al.  The IntAct molecular interaction database in 2012 , 2011, Nucleic Acids Res..

[28]  Alex Alves Freitas,et al.  Message-passing algorithms for the prediction of protein domain interactions from protein-protein interaction data , 2008, Bioinform..

[29]  Arnaud Céol,et al.  3did: identification and classification of domain-based interactions of known three-dimensional structure , 2010, Nucleic Acids Res..

[30]  Ioannis Xenarios,et al.  DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions , 2002, Nucleic Acids Res..

[31]  Christopher J. Rawlings,et al.  Data integration for plant genomics - exemplars from the integration of Arabidopsis thaliana databases , 2009, Briefings Bioinform..

[32]  Marcelo M. Brandão,et al.  AtPIN: Arabidopsis thaliana Protein Interaction Network , 2009, BMC Bioinformatics.

[33]  Nan Wang,et al.  AgBase: a functional genomics resource for agriculture , 2006, BMC Genomics.

[34]  M. Grelon,et al.  AtPRD1 is required for meiotic double strand break formation in Arabidopsis thaliana , 2007, The EMBO journal.

[35]  Alex Bateman,et al.  Reuse of structural domain–domain interactions in protein networks , 2007, BMC Bioinformatics.

[36]  A. Harvey Millar,et al.  A Predicted Interactome for Arabidopsis1[C][W][OA] , 2007, Plant Physiology.

[37]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[38]  E. Sanchez-Moran,et al.  Pathways to meiotic recombination in Arabidopsis thaliana. , 2011, The New phytologist.

[39]  S. Pongor,et al.  The quest for orthologs: finding the corresponding gene across genomes. , 2008, Trends in genetics : TIG.

[40]  Jonathan D. G. Jones,et al.  Evidence for Network Evolution in an Arabidopsis Interactome Map , 2011, Science.

[41]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[42]  Andrew H. Paterson,et al.  Synteny and Collinearity in Plant Genomes , 2008, Science.

[43]  Haibao Tang,et al.  Unleashing the Genome of Brassica Rapa , 2012, Front. Plant Sci..

[44]  M. Freeling,et al.  How to usefully compare homologous plant genes and chromosomes as DNA sequences. , 2008, The Plant journal : for cell and molecular biology.

[45]  J. Higgins,et al.  AtMSH5 partners AtMSH4 in the class I meiotic crossover pathway in Arabidopsis thaliana, but is not required for synapsis. , 2008, The Plant journal : for cell and molecular biology.

[46]  P. Fontana,et al.  Rapid Annotation of Anonymous Sequences from Genome Projects Using Semantic Similarities and a Weighting Scheme in Gene Ontology , 2009, PloS one.

[47]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[48]  Peng Li,et al.  Global protein interactome exploration through mining genome-scale data in Arabidopsis thaliana , 2010, BMC Genomics.

[49]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[50]  Marc P. Waase,et al.  Analysis of conditional mutations in the Saccharomyces cerevisiae MLH1 gene in mismatch repair and in meiotic crossing over. , 2002, Genetics.

[51]  Kengo Kinoshita,et al.  Coexpression landscape in ATTED-II: usage of gene list and gene network for various types of pathways , 2010, Journal of Plant Research.

[52]  K. Mechtler,et al.  Analysis of meiotic protein complexes from Arabidopsis and Brassica using affinity-based proteomics. , 2013, Methods in molecular biology.

[53]  Sandra Orchard,et al.  Charting plant interactomes: possibilities and challenges. , 2008, Trends in plant science.

[54]  Michael Y. Galperin,et al.  The 2012 Nucleic Acids Research Database Issue and the online Molecular Biology Database Collection , 2011, Nucleic Acids Res..

[55]  Hirohisa Kishino,et al.  Divergence pattern of duplicate genes in protein-protein interactions follows the power law. , 2005, Molecular biology and evolution.

[56]  M. Matsuoka,et al.  Comprehensive Network Analysis of Anther-Expressed Genes in Rice by the Combination of 33 Laser Microdissection and 143 Spatiotemporal Microarrays , 2011, PloS one.

[57]  J Douglas Armstrong,et al.  Bio::Homology::InterologWalk - A Perl module to build putative protein-protein interaction networks through interolog mapping , 2011, BMC Bioinformatics.

[58]  G. Coupland,et al.  Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. , 1996, The Plant journal : for cell and molecular biology.

[59]  Atul J. Butte,et al.  Quantifying the relationship between co-expression, co-regulation and gene function , 2004, BMC Bioinformatics.

[60]  Mingzhi Lin,et al.  Computational Identification of Potential Molecular Interactions in Arabidopsis1[C][W] , 2009, Plant Physiology.

[61]  M. Berardini,et al.  hMSH4-hMSH5 recognizes Holliday Junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. , 2004, Molecular cell.

[62]  R. Holliday THE INDUCTION OF MITOTIC RECOMBINATION BY MITOMYCIN C IN USTILAGO AND SACCHAROMYCES. , 1964, Genetics.

[63]  Erik L. L. Sonnhammer,et al.  InParanoid 7: new algorithms and tools for eukaryotic orthology analysis , 2009, Nucleic Acids Res..