A simplified structure for the second order cosmological perturbation equations
暂无分享,去创建一个
[1] Jinn-Ouk Gong,et al. SECOND-ORDER SOLUTIONS OF COSMOLOGICAL PERTURBATION IN THE MATTER-DOMINATED ERA , 2012, 1204.3345.
[2] Karim A. Malik,et al. Second Order Perturbations During Inflation Beyond Slow-roll , 2011, 1103.0912.
[3] C. Uggla,et al. Cosmological perturbation theory revisited , 2011, 1102.5039.
[4] F. Bernardeau,et al. The cosmic microwave background bispectrum from the non-linear evolution of the cosmological perturbations , 2010, 1003.0481.
[5] S. Matarrese,et al. Second-order matter perturbations in a ΛCDM cosmology and non-Gaussianity , 2010, 1002.3759.
[6] S. Matarrese,et al. Non-Gaussianity and the Cosmic Microwave Background Anisotropies , 2010, 1001.3957.
[7] Kouji Nakamura. Second-Order Gauge-Invariant Cosmological Perturbation Theory: Current Status , 2010, 1001.2621.
[8] Karim A. Malik,et al. Practical tools for third order cosmological perturbations , 2009, 0909.0942.
[9] Kouji Nakamura. Inclusion of the first-order vector- and tensor-modes in the second-order gauge-invariant cosmological perturbation theory , 2009, 0901.3635.
[10] Karim A. Malik,et al. Different approaches to the second-order Klein–Gordon equation , 2007, 0712.1787.
[11] J. Hwang,et al. Second-order perturbations of cosmological fluids : Relativistic effects of pressure, multicomponent, curvature, and rotation , 2007, 0704.1927.
[12] P. Steinhardt,et al. Gravitational Wave Spectrum Induced by Primordial Scalar Perturbations , 2007, hep-th/0703290.
[13] D. Wands,et al. Cosmological gravitational wave background from primordial density perturbations , 2006, gr-qc/0612013.
[14] Karim A. Malik. A not so short note on the Klein–Gordon equation at second order , 2006, astro-ph/0610864.
[15] Kouji Nakamura. Gauge-invariant formulation of second-order cosmological perturbations , 2006, gr-qc/0605107.
[16] E. Komatsu,et al. Non-Gaussianity from inflation: theory and observations , 2004, Physics Reports.
[17] R. Durrer. Cosmological perturbation theory , 2004, astro-ph/0402129.
[18] S. Matarrese,et al. Enhancement of non-gaussianity after inflation , 2003, astro-ph/0308088.
[19] J. Hwang,et al. Second-order perturbations of the Friedmann world model , 2003, astro-ph/0305123.
[20] V. Acquaviva,et al. Gauge-invariant second-order perturbations and non-Gaussianity from inflation , 2003 .
[21] Karim A. Malik,et al. Evolution of second-order cosmological perturbations , 2003, astro-ph/0307055.
[22] Kouji Nakamura. Gauge Invariant Variables in Two-Parameter Nonlinear Perturbations , 2003, gr-qc/0303090.
[23] A. Coley. Dynamical Systems in Cosmology , 1999, gr-qc/9910074.
[24] S. Matarrese,et al. Perturbations of spacetime: gauge transformations and gauge invariance at second order and beyond , 1996, gr-qc/9609040.
[25] Hume A. Feldman,et al. Theory of cosmological perturbations , 1992 .
[26] J. Bardeen,et al. Gauge Invariant Cosmological Perturbations , 1980 .