Nonlinear reconstruction of the speed of sound in soft tissues: A comparison between the simulation results applying Kaczmarz and Contrast Source Inversion methods

Nonlinear ultrasound diffraction tomography reconstructs material parameters of a medium from scattered sound waves taking into account multiple scattering. The reconstruction algorithm based on the (KM) reconstructs the spatially varying speed of sound (SoS), equivalent to a spatially varying compressibility, in the time domain. On the other hand, the Contrast Source Inversion method (CSI) reconstructs the SoS from the refractive index of an inhomogeneous object in a known background in the frequency domain. In this work, the reconstruction results for the SoS applying both methods to the same object in the same medium are compared. The results show smaller errors for Kaczmarz method but higher convergence rate for the Contrast Source Inversion algorithm.

[1]  R. Vershynin,et al.  A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.

[2]  P. M. Berg,et al.  Contrast Source Inversion Method: State of Art , 2001 .

[3]  Avinash C. Kak,et al.  Principles of computerized tomographic imaging , 2001, Classics in applied mathematics.

[4]  P. M. Berg,et al.  A finite-difference contrast source inversion method , 2008 .

[5]  L. Salehi,et al.  Nonlinear reconstruction of compressibility and density variations using the Kaczmarz method , 2012, 2012 IEEE International Ultrasonics Symposium.

[6]  R. Kowar Estimation of the density, the wave speed and the acoustic impedance function in ultrasound imaging , 2005 .

[7]  L. Salehi,et al.  Nonlinear simultaneous reconstruction of inhomogeneous compressibility and mass density distributions in unidirectional pulse-echo ultrasound imaging , 2013, Physics in medicine and biology.

[8]  P. M. Berg,et al.  A modified gradient method for two-dimensional problems in tomography , 1992 .

[9]  Koen W A van Dongen,et al.  A full vectorial contrast source inversion scheme for three-dimensional acoustic imaging of both compressibility and density profiles. , 2007, The Journal of the Acoustical Society of America.

[10]  K T Ladas,et al.  Application of an art algorithm in an experimental study of ultrasonic diffraction tomography. , 1993, Ultrasonic imaging.

[11]  Otmar Scherzer,et al.  Convergence Analysis Of A Landweber—Kaczmarz Method For Solving Nonlinear Ill-Posed Problems , 2002 .

[12]  T. Habashy,et al.  Simultaneous nonlinear reconstruction of two‐dimensional permittivity and conductivity , 1994 .

[13]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[14]  Frank Natterer,et al.  Mathematical methods in image reconstruction , 2001, SIAM monographs on mathematical modeling and computation.

[15]  F. Natterer Reflectors in wave equation imaging , 2008 .

[16]  Otmar Scherzer,et al.  KACZMARZ METHODS FOR REGULARIZING NONLINEAR ILL-POSED EQUATIONS II: APPLICATIONS , 2007 .

[17]  N. Bojarski,et al.  A survey of the near-field far-field inverse scattering inverse source integral equation , 1982 .

[18]  A. J. Devaney Variable density acoustic tomography , 1985 .

[19]  P. M. Berg,et al.  A contrast source inversion method , 1997 .

[20]  Mark A. Anastasio,et al.  Image reconstruction in variable density acoustic tomography , 2005, SPIE Medical Imaging.

[21]  R. P. Porter,et al.  Image formation with arbitrary holographic type surfaces , 1969 .

[22]  P. M. Berg,et al.  A total variation enhanced modified gradient algorithm for profile reconstruction , 1995 .

[23]  Tobin A. Driscoll,et al.  Staggered Time Integrators for Wave Equations , 2000, SIAM J. Numer. Anal..

[24]  Michael Oristaglio,et al.  Inversion Procedure for Inverse Scattering within the Distorted-Wave Born Approximation , 1983 .