Testing for stochastic dominance using the weighted McFadden-type statistic

Abstract We demonstrate that when testing for stochastic dominance of order three and above, using a weighted version of the Kolmogorov–Smirnov-type statistic proposed by McFadden [1989. In: Fomby, T.B., Seo, T.K. (Eds.), Studies in the Economics of Uncertainty. Springer, New York, pp. 113–134] is necessary for obtaining a non-degenerate asymptotic distribution. Since the asymptotic distribution is complex, we discuss a bootstrap approximation for it in the context of a real application.

[1]  LevyHaim Stochastic Dominance and Expected Utility , 1992 .

[2]  Gordon Anderson,et al.  Nonparametric Tests of Stochastic Dominance in Income Distributions , 1996 .

[3]  K. Mosler,et al.  Stochastic orders and decision under risk , 1991 .

[4]  K. Arrow,et al.  The Economics of Uncertainty. , 1970 .

[5]  O. Linton,et al.  Consistent Testing for Stochastic Dominance Under General Sampling Schemes , 2003 .

[6]  V. S. Tsirel’son The Density of the Distribution of the Maximum of a Gaussian Process , 1976 .

[7]  O. Linton,et al.  Testing for Stochastic Dominance Efficiency , 2005 .

[8]  M. Trede,et al.  A Kolmogorov-type test for second-order stochastic dominance , 1998 .

[9]  T. Fomby,et al.  Studies in the Economics of Uncertainty , 1989 .

[10]  R. Davidson,et al.  Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality , 1998 .

[11]  Friedrich Schmid,et al.  Testing for First Order Stochastic Dominance in Either Direction , 1996 .

[12]  Testing for second order stochastic dominance , 1985 .

[13]  P. Muliere,et al.  Welfare indicators: A review and new perspectives. 1. Measurement of inequality , 2003 .

[14]  Harshinder Singh,et al.  Testing for Second-Order Stochastic Dominance of Two Distributions , 1994, Econometric Theory.

[15]  H. Levy Stochastic dominance and expected utility: survey and analysis , 1992 .

[16]  A. Müller,et al.  Comparison Methods for Stochastic Models and Risks , 2002 .

[17]  R. Eubank,et al.  A test for second order stochastic dominance , 1993 .

[18]  Moshe Shaked,et al.  Stochastic orders and their applications , 1994 .

[19]  M. Trede,et al.  Nonparametric inference for second order stochastic dominance , 1996 .

[20]  K. Borch THE ECONOMICS OF UNCERTAINTY, I. , 1969 .

[21]  M. Csörgo,et al.  Bootstrapping Empirical Functions , 1989 .

[22]  A. Müller Orderings of risks: A comparative study via stop-loss transforms , 1996 .

[23]  Stephen G. Donald,et al.  Consistent Tests for Stochastic Dominance , 2003 .

[24]  Robert S. Turley,et al.  A Comparison of Parametric Models of Income Distribution Across Countries and Over Time , 2002 .