Geometrically frustrated magnetic materials

The current state of efforts to understand the phenomenon of geometric magnetic frustration is described in the context of several key materials. All are transition metal oxides which crystallize with magnetic lattices which are geometrically or topologically prone to frustration such as those based on triangles or tetrahedra which share corners, edges or faces. These include the anhydrous alums, jarosites, pyrochlores, spinels, magnetoplumbites, garnets, ordered NaCl and other structure types. Special attention is paid to materials which do not undergo long range ordering at the lowest temperatures but instead form exotic ground states such as spin glasses, spin liquids and spin ices, and to S = 1/2 based materials.

[1]  S. Bramwell,et al.  GEOMETRICAL FRUSTRATION IN THE FERROMAGNETIC PYROCHLORE HO2TI2O7 , 1997 .

[2]  Y. Tokura,et al.  MAGNETOTRANSPORT PHENOMENA IN A METALLIC FERROMAGNET ON THE VERGE OF MOTT TRANSITION : SM2MO2O7 , 1999 .

[3]  Steiner,et al.  Magnetic properties of the ZnFe2O4 spinel. , 1996, Physical review. B, Condensed matter.

[4]  E. Antipov,et al.  Synthesis and characterization of reduced niobates CaLnNb2O7, Ln = Y, Nd with a pyrochlore structure , 1997 .

[5]  Y. Kasuya,et al.  Charge and spin ordering in LiMn 2 O 4 , 2001 .

[6]  Reimers,et al.  Neutron-diffraction study of magnetic ordering in the pyrochlore series R2Mo2O7 (R=Nd,Tb,Y). , 1991, Physical review. B, Condensed matter.

[7]  J. N. Reimers,et al.  Structure and Magnetism in λ-MnO2. Geometric Frustration in a Defect Spinel , 1998 .

[8]  J. Dahn,et al.  Spin Glass Behavior in the Frustrated Antiferromagnetic LiNiO2 , 1993 .

[9]  Miller,et al.  Low temperature spin dynamics of the geometrically frustrated antiferromagnetic garnet Gd3Ga5O12 , 2000, Physical review letters.

[10]  Bishop,et al.  Frustration induced spin freezing in a site-ordered magnet: Gadolinium gallium garnet. , 1995, Physical review letters.

[11]  P. Battle,et al.  The crystal and magnetic structures of Sr2LuRuO6, Ba2YRuO6, and Ba2LuRuO6 , 1989 .

[12]  M. Yethiraj,et al.  Field-induced transitions in the highly frustrated magnet gadolinium gallium garnet – long- or short-range order? , 2002 .

[13]  D. Flood Magnetization and magnetic entropy of Dy2Ti2O7 , 1974 .

[14]  Ronald I. Smith,et al.  Magnetic properties of pure and diamagnetically doped jarosites: Model kagome antiferromagnets with variable coverage of the magnetic lattice , 2000 .

[15]  P. Gougeon,et al.  Optical properties of pyrochlore oxides R2Mo2O7- delta (R: Sm, Gd, and Ho) , 1995 .

[16]  H. Kadowaki,et al.  Double-Q 120 degrees structure in the Heisenberg antiferromagnet on rhombohedrally stacked triangular lattice LiCrO2 , 1995 .

[17]  H. Yoshizawa,et al.  Magnetic phase transition in AgCrO2 , 1994 .

[18]  S. Lee,et al.  GLASSY STATICS AND DYNAMICS IN THE CHEMICALLY ORDERED PYROCHLORE ANTIFERROMAGNET Y2MO2O7 , 1999 .

[19]  Townsend,et al.  Triangular-spin, kagome plane in jarosites. , 1986, Physical review. B, Condensed matter.

[20]  S. Cheong,et al.  Emergent excitations in a geometrically frustrated magnet , 2002, Nature.

[21]  Arthur P. Ramirez,et al.  Strongly Geometrically Frustrated Magnets , 1994 .

[22]  W. Roth Magnetic properties of normal spinels with only a-a interactions , 1964 .

[23]  W. Wolf,et al.  Magnetic interactions and short range order in gadolinium gallium garnet , 1979 .

[24]  Jacques Villain,et al.  Insulating spin glasses , 1979 .

[25]  Kremer,et al.  Magnetic-susceptibility and specific-heat studies of spin-glass-like ordering in the pyrochlore compounds R2Mo2O7 (R=Y, Sm, or Gd). , 1992, Physical review. B, Condensed matter.

[26]  Hwang,et al.  Anomalous magnetotransport properties of R2Mo2O7 near the magnetic phase boundary , 2000, Physical review letters.

[27]  J. P. Remeika,et al.  Calorimetric Study of Several Rare-Earth Gallium Garnets , 1967 .

[28]  Mark D. Smith,et al.  Crystal growth of Ba2MOsO6 (M=Li, Na) from reactive hydroxide fluxes , 2002 .

[29]  A. Rougier,et al.  High magnetic field properties and ESR of the compounds , 1999 .

[30]  E. F. Bertaut,et al.  Structure magnétique et propriétés magnétiques de GeNi2O 4 , 1964 .

[31]  K. Harris,et al.  MAGNETIC STRUCTURES OF THE TRIANGULAR LATTICE MAGNETS AFE(SO4)2 (A=K, RB, CS) , 1998 .

[32]  T. Sakakibara,et al.  Low-temperature magnetic properties of pyrochlore stannates , 2002 .

[33]  I. Parkin,et al.  Bulk magnetization of the heavy rare earth titanate pyrochlores - a series of model frustrated magnets , 2000 .

[34]  Valentino,et al.  Investigation of the field induced antiferromagnetic phase transition in the frustrated magnet: Gadolinium gallium garnet. , 1994, Physical review letters.

[35]  J. Gardner,et al.  Spin-glass behavior in the S = 1 / 2 fcc ordered perovskite Sr 2 CaReO 6 , 2002 .

[36]  A. Wills,et al.  Low-Temperature Structure and Magnetic Properties of the Spinel LiMn2O4: A Frustrated Antiferromagnet and Cathode Material , 1999 .

[37]  B. Lüthi,et al.  Magnetic and elastic properties of zinc-chromite , 1971 .

[38]  S. Miyashita,et al.  Phase Transitions of Anisotropic Heisenberg Antiferromagnets on the Triangular Lattice , 1985 .

[39]  M. Gingras,et al.  Thermodynamic and single-ion properties of Tb3+ within the collective paramagnetic-spin liquid state of the frustrated pyrochlore antiferromagnet Tb2Ti2O7 , 2000 .

[40]  Kremer,et al.  Short-range magnetic ordering in the highly frustrated pyrochlore Y2Mn2O7. , 1991, Physical review. B, Condensed matter.

[41]  H. Okumura,et al.  Nature of spin freezing transition of geometrically frustrated pyrochlore system R2Ru2O7 (R=rare earth elements and Y) , 2001 .

[42]  Y. Kubo,et al.  Giant magnetoresistance in Ti2Mn2O7 with the pyrochlore structure , 1996, Nature.

[43]  M. Hervieu,et al.  Electronic Crystallization in a Lithium Battery Material: Columnar Ordering of Electrons and Holes in the Spinel LiMn 2 O 4 , 1998 .

[44]  R. Moessner,et al.  LOW-TEMPERATURE PROPERTIES OF CLASSICAL GEOMETRICALLY FRUSTRATED ANTIFERROMAGNETS , 1998, cond-mat/9807384.

[45]  H. Bando,et al.  Structure and magnetic properties of the pyrochlore Ho 2 Ru 2 O 7 : A possible dipolar spin ice system , 2002 .

[46]  A. Harrison,et al.  μSR studies of the kagomé antiferromagnet (H3O)Fe3(OH)6(SO4)2 , 2000 .

[47]  M. Green,et al.  Order in the Heisenberg pyrochlore: The magnetic structure of Gd2Ti2O7 , 2001, cond-mat/0105043.

[48]  H. Berg,et al.  The LiMn2O4 to λ-MnO2 phase transition studied by in situ neutron diffraction , 2001 .

[49]  J. N. Reimers,et al.  Short‐range ordering in a three‐dimensionally frustrated magnet, Tb2Mo2O7, by wide‐ and small‐angle neutron diffraction , 1990 .

[50]  Masafumi Ito,et al.  Magnetic structure of Nd2Mo2O7 , 2001 .

[51]  T. Sakakibara,et al.  LETTER TO THE EDITOR: Low temperature magnetic properties of frustrated pyrochlore ferromagnets Ho2Sn2O7 and Ho2Ti2O7 , 2000 .

[52]  Philip W. Anderson,et al.  Resonating valence bonds: A new kind of insulator? , 1973 .

[53]  K. H. Andersen,et al.  A polarised neutron scattering study of the magnetic correlations in the kagome antiferromagnet , 1999 .

[54]  Lee,et al.  Isolated spin pairs and two dimensional magnetism in SrCr9pGa12-9pO19. , 1996, Physical review letters.

[55]  Reimers Absence of long-range order in a three-dimensional geometrically frustrated antiferromagnet. , 1992, Physical review. B, Condensed matter.

[56]  Y. Maeno,et al.  Metal-Nonmetal Changeover in Pyrochlore Iridates , 2001, cond-mat/0106330.

[57]  Shi,et al.  Mean-field approach to magnetic ordering in highly frustrated pyrochlores. , 1991, Physical review. B, Condensed matter.

[58]  N. Nagaosa,et al.  Spin Chirality, Berry Phase, and Anomalous Hall Effect in a Frustrated Ferromagnet , 2001, Science.

[59]  J. Gardner,et al.  Neutron scattering studies of the cooperative paramagnet pyrochloreTb2Ti2O7 , 2001 .

[60]  M. T. Casais,et al.  The magnetic structure of YMnO3 perovskite revisited , 2002 .

[61]  H. Blöte,et al.  Heat-capacity measurements on rare-earth double oxides R2M2O7 , 1969 .

[62]  R. Kleiman,et al.  Low‐temperature specific heat and thermal expansion in the frustrated garnet Gd3Ga5O12 , 1991 .

[63]  Multiple field-induced phase transitions in the geometrically frustrated dipolar magnet: Gd(2) Ti(2)O(7). , 2001, Physical review letters.

[64]  M. Yethiraj,et al.  INVESTIGATION OF THE LOW-TEMPERATURE SPIN-LIQUID BEHAVIOR OF THE FRUSTRATED MAGNET GADOLINIUM GALLIUM GARNET , 1998 .

[65]  G. V. Subba Rao,et al.  Oxide pyrochlores — A review , 1983 .

[66]  Y. Gros,et al.  Models of the magnetic structure of zinc ferrite , 1970 .

[67]  S. Bramwell,et al.  Liquid-Gas Critical Behavior in a Frustrated Pyrochlore Ferromagnet , 1998 .

[68]  M. Rosseinsky,et al.  Synthesis, Structure, and Magnetic Properties of NaTiO2 , 1998 .

[69]  Philip W. Anderson,et al.  On the ground state properties of the anisotropic triangular antiferromagnet , 1974 .

[70]  A. Wills,et al.  Two-Dimensional Short-Range Magnetic Order in the Tetragonal Spinel Li2Mn2O4 , 1999 .

[71]  L. Soderholm,et al.  Relationship between crystal structure and magnetic properties of (RE)2V2O7; RE=Lu, Yb, Tm , 1982 .

[72]  J. Sugiyama,et al.  Neutron Scattering Study of the Charge Ordering and the Spin Ordering of the Magnetically Frustrated Spinel Antiferromagnet , 1999 .

[73]  S. Cheong,et al.  Freezing of spin correlated nanoclusters in a geometrically frustrated magnet , 2002 .

[74]  R. Moessner,et al.  Properties of a classical spin liquid: the Heisenberg pyrochlore antiferromagnet , 1997, cond-mat/9712063.

[75]  Tsuguo Fukuda,et al.  Growth and characterization of lanthanum gallium silicate La3Ga5SiO14 single crystals for piezoelectric applications , 1996 .

[76]  K. Miyoshi,et al.  Successive spin freezing behavior in a pyrochlore antiferromagnet Y2Mo2O7 under magnetic fields , 2000 .

[77]  R. Siddharthan,et al.  Zero-point entropy in ‘spin ice’ , 1999, Nature.

[78]  C. Lacroix,et al.  Pyrochlore Antiferromagnet: A Three-Dimensional Quantum Spin Liquid , 1998, cond-mat/9807407.

[79]  J. N. Reimers,et al.  The crystal structure of the spin-glass pyrochlore, Y2Mo2O7 , 1988 .

[80]  K. Stevens Matrix Elements and Operator Equivalents Connected with the Magnetic Properties of Rare Earth Ions , 1952 .

[81]  S. Cheong,et al.  Studies of the three-dimensional frustrated antiferromagnetic ZnCr2O4 , 2001 .

[82]  J. Greedan,et al.  Spin-glass-like behavior in Y2Mo2O7, a concentrated, crystalline system with negligible apparent disorder , 1986 .

[83]  L. Corruccini,et al.  Low temperature magnetic properties of the geometrically frustrated pyrochlores Tb2Ti2O7, Gd2Ti2O7, and Gd2Sn2O7 , 2001 .

[84]  G. Luke,et al.  Li 4 MgReO 6 : An S=1/2 antiferromagnet exhibiting spin-glass behavior , 2000 .

[85]  Christopher R Wiebe,et al.  Neutron-scattering studies of the geometrically frustrated spinel LiMn2O4 , 2002 .

[86]  Y. Hinatsu,et al.  Magnetic properties of iridium pyrochlores R2Ir2O7 (R = Y, Sm, Eu and Lu) , 2001 .

[87]  T. Mason,et al.  Magnetic correlations in deuteronium jarosite, a model S = 5/2 Kagomé antiferromagnet , 1996, cond-mat/9607106.

[88]  Y. Hinatsu,et al.  Magnetic and calorimetric studies of double perovskites Ba2LnReO6(Ln= Y, Nd, Sm–Lu) , 2002 .

[89]  E. Antipov,et al.  Synthesis and characterization of the reduced niobates CaLnNb2O7, Ln = La-Pr, Sm, Gd-Lu, with the pyrochlore-type structure , 1998 .

[90]  Harris,et al.  Possible Néel orderings of the Kagomé antiferromagnet. , 1992, Physical review. B, Condensed matter.

[91]  I. Swainson,et al.  Cooperative Paramagnetism in the Geometrically Frustrated Pyrochlore Antiferromagnet Tb 2 Ti 2 O 7 , 1999 .

[92]  J. W. Stout,et al.  The Entropy of Water and the Third Law of Thermodynamics. The Heat Capacity of Ice from 15 to 273°K. , 1936 .

[93]  Reimers Diffuse-magnetic-scattering calculations for frustrated antiferromagnets. , 1992, Physical review. B, Condensed matter.

[94]  P. Hagenmuller,et al.  On magnetic properties of some oxides with delafossite-type structure , 1986 .

[95]  P. Anderson The Resonating Valence Bond State in La2CuO4 and Superconductivity , 1987, Science.

[96]  Mark T. Anderson,et al.  B-cation arrangements in double perovskites , 1993 .

[97]  R. Cava,et al.  Crystal-field interaction in the pyrochlore magnet Ho2Ti2O7 , 2000 .

[98]  S. Blundell,et al.  A muon-spin relaxation (µSR) study of the geometrically frustrated magnets Gd3Ga5O12 and ZnCr2O4 , 2002 .

[99]  C. Delmas,et al.  Neutron powder diffraction studies of two-dimensional magnetic oxides , 1979 .

[100]  A. Ravex,et al.  Specific heat of dysprosium gallium garnet between 37 mK and 2 K , 1977 .

[101]  A. Azad,et al.  Synthesis, crystal structure, and magnetic characterization of the double perovskite Ba2MnWO6 , 2001 .

[102]  K. Harris,et al.  LETTER TO THE EDITOR: The anhydrous alums as model triangular-lattice magnets , 1996 .

[103]  Mineo Sato,et al.  Magnetic properties and magnetic ordering in the rare earth molybdenum(IV) pyrochlores: R2Mo2O7 , 1986 .

[104]  E. Sauerbrei,et al.  Refinement of the crystal structure of Co3V2O8 and Ni3V2O8 , 1973 .

[105]  A. L. Bail,et al.  Copper-containing minerals—I. Cu3V2O7(OH)2, 2H2O: The synthetichomolog of volborthite; crystal structure determination from X-ray and neutron data; structural correlations , 1990 .

[106]  Pedersen,et al.  Frustrated pyrochlore oxides, Y2Mn2O7, Ho2Mn2O7, and Yb2Mn2O7: Bulk magnetism and magnetic microstructure. , 1996, Physical review. B, Condensed matter.

[107]  A. Harrison,et al.  Structure and magnetism of hydronium jarosite, a model Kagomé antiferromagnet , 1996 .

[108]  Watanabe,et al.  Absolute instability for enhanced radiation from a high-power plasma-filled backward-wave oscillator. , 1990, Physical review letters.

[109]  B. Gaulin Geometrically-frustrated magnetism on triangular and tetrahedral lattices , 1994 .

[110]  H. Takagi,et al.  Crystal structure, magnetic and transport properties, and electronic band structure of A{sub 2}Mn{sub 2}O{sub 7} pyrochlores (A=Y,thinspIn,thinspLu, and Tl) , 1999 .

[111]  N. Ali,et al.  Electrical resistivity of pyrochlore compounds R2Mo2O7(R =Nd, Sm, Gd, Tb, Y) , 1987 .

[112]  M. Gingras,et al.  Pressure-induced crystallization of a spin liquid , 2002, Nature.

[113]  W. Kinzel,et al.  Magnetic ordering in diluted Ising and Heisenberg systems with competing interactions: Theory and application to EuxSr1−xS , 1980 .

[114]  Dipolar interactions and origin of spin ice in ising pyrochlore magnets , 2000, Physical review letters.

[115]  Mason,et al.  Spin freezing in the geometrically frustrated pyrochlore antiferromagnet Tb2Mo2O7. , 1992, Physical review letters.

[116]  H. Kadowaki,et al.  Magnetic susceptibilities of the frustrated triangular lattice antiferromagnets CsVCl3 and VX2 (X=Cl, Br and I): appearance of magnetic liquid in the ordered state , 1983 .

[117]  I. Solovyev Effects of crystal structure and on-site Coulomb interactions on the electronic and magnetic structure ofA2Mo2O7(A=Y,Gd, and Nd) pyrochlores , 2003 .

[118]  Reimers,et al.  Order by disorder in the classical Heisenberg kagomé antiferromagnet. , 1993, Physical review. B, Condensed matter.

[119]  S. Maegawa,et al.  Magnetic structure of the kagom lattice antiferromagnet potassium jarosite KFe3(OH)6(SO4)2 , 2000 .

[120]  Tatsuo C. Kobayashi,et al.  Orbital Frustration and Resonating Valence Bond State in the Spin-1/2 Triangular Lattice LiNiO2. , 1998 .

[121]  A. Skjeltorp,et al.  Magnetic phase diagram of gadolinium gallium garnet , 1980 .

[122]  F. Lotgering The influence of Fe3+ ions at tetrahedral sites on the magnetic properties of ZnFe2O4 , 1965 .

[123]  Magnets with strong geometric frustration , 2001 .

[124]  Y. Ishii,et al.  Neutron scattering study of dipolar spin ice Ho2Sn2O7: Frustrated pyrochlore magnet , 2001, cond-mat/0107278.