A label-free DNA aptamer-based impedance biosensor for the detection of E. coli outer membrane proteins

Abstract A label-free DNA aptamer-based impedance biosensor for the detection of E. coli outer membrane proteins (OMPs) was developed. Two single stranded DNA sequences were tested as recognition elements and compared. The aptamer capture probes were immobilized, with and without 6-mercapto-1-hexanol (MCH) on a gold electrode. Each step of the modification process was characterized by Faradaic impedance spectroscopy (FIS). A linear relationship between the electron-transfer resistance (Ret) and E. coli OMPs concentration was demonstrated in a dynamic detection range of 1 × 10−7–2 × 10−6 M. Moreover, the aptasensor showed selectivity despite the presence of other possible water contaminates and could be regenerated under low pH condition. The developed biosensor shows great potential to be incorporated in a biochip and used for in situ detection of E. coli OMPs in water samples.

[1]  John G. Bruno,et al.  A Novel Screening Method for Competitive FRET-Aptamers Applied to E. coli Assay Development , 2010, Journal of Fluorescence.

[2]  P. He,et al.  An Aptamer-Based Protein Biosensor by Detecting the Amplified Impedance Signal , 2006 .

[3]  Qiang Gao,et al.  Electrochemical impedance spectroscopy for study of aptamer-thrombin interfacial interactions. , 2008, Biosensors & bioelectronics.

[4]  Michael Famulok,et al.  Label-free impedimetric aptasensor for lysozyme detection based on carbon nanotube-modified screen-printed electrodes. , 2012, Analytical biochemistry.

[5]  María Jesús Lobo-Castañón,et al.  Modified-RNA aptamer-based sensor for competitive impedimetric assay of neomycin B. , 2007, Journal of the American Chemical Society.

[6]  B. Kamp,et al.  Development of an electrochemical immunosensor for direct detection of interferon-γ at the attomolar level , 2001 .

[7]  J. Randles Kinetics of rapid electrode reactions , 1947 .

[8]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[9]  J. Bruno,et al.  In Vitro antibacterial effects of antilipopolysaccharide DNA aptamer-C1qrs complexes , 2008, Folia Microbiologica.

[10]  Yong-Jin Cho,et al.  In vitro selection of Escherichia coli O157:H7-specific RNA aptamer. , 2012, Biochemical and biophysical research communications.

[11]  Peter Dubruel,et al.  Recent advances in recognition elements of food and environmental biosensors: a review. , 2010, Biosensors & bioelectronics.

[12]  Darija Muharemagic,et al.  Aptamer-based viability impedimetric sensor for viruses. , 2012, Analytical chemistry.

[13]  M. Mascini,et al.  Analytical applications of aptamers. , 2005, Biosensors & bioelectronics.

[14]  Rebeca Miranda-Castro,et al.  Structured Nucleic Acid Probes for Electrochemical Devices , 2009 .

[15]  Yingfu Li,et al.  Recent Progress in Nucleic Acid Aptamer-Based Biosensors and Bioassays , 2008, Sensors.

[16]  Noemí de-los-Santos-Álvarez,et al.  Aptamer-Based Inhibition Assay for the Electrochemical Detection of Tobramycin Using Magnetic Microparticles , 2011 .

[17]  J. Riu,et al.  Real-time potentiometric detection of bacteria in complex samples. , 2010, Analytical chemistry.

[18]  R. Stoltenburg,et al.  SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. , 2007, Biomolecular engineering.

[19]  Lucia Mosiello,et al.  Escherichia coli detection in vegetable food by a potentiometric biosensor , 2003 .

[20]  Meng Jing,et al.  Methods for measuring aptamer-protein equilibria: a review. , 2011, Analytica chimica acta.

[21]  M. Gu,et al.  Electrochemical detection of 17β-estradiol using DNA aptamer immobilized gold electrode chip , 2007 .

[22]  A P Turner,et al.  Biosensors--Sense and Sensitivity , 2000, Science.

[23]  Joseph Wang,et al.  Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge. , 2005, Chemical communications.

[24]  Noemí de-los-Santos-Álvarez,et al.  Aptamers as recognition elements for label-free analytical devices , 2008 .

[25]  E. Alocilja,et al.  Aptasensors for detection of microbial and viral pathogens , 2008, Biosensors and Bioelectronics.

[26]  Y. Aoyama,et al.  In vitro selection of RNA aptamer against Escherichia coli release factor 1. , 2007, Bioorganic & medicinal chemistry letters.

[27]  Huangxian Ju,et al.  A Rapid and Sensitive Aptamer-Based Electrochemical Biosensor for Direct Detection of Escherichia Coli O111 , 2012 .

[28]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[29]  Jeong-O Lee,et al.  Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. , 2008, Small.

[30]  Ilaria Palchetti,et al.  Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. , 2012, Angewandte Chemie.

[31]  A. Reilly Prevention and control of enterohaemorrhagic Escherichia coli (EHEC) infections: memorandum from a WHO meeting. WHO Consultation on Prevention and Control of Enterohaemorrhagic Escherichia coli (EHEC) Infections. , 1998, Bulletin of the World Health Organization.

[32]  C. O’Sullivan Aptasensors – the future of biosensing? , 2002, Analytical and bioanalytical chemistry.

[33]  Young Keun Kim,et al.  A sensitive method to detect Escherichia coli based on immunomagnetic separation and real-time PCR amplification of aptamers. , 2009, Biosensors & bioelectronics.

[34]  Itamar Willner,et al.  Label-free and reagentless aptamer-based sensors for small molecules. , 2006, Journal of the American Chemical Society.

[35]  A. Steel,et al.  Electrochemical quantitation of DNA immobilized on gold. , 1998, Analytical chemistry.