Searching for optimal configurations by simulated tunneling

Optimization theory deals with algorithms finding the lowest cost (energy) configuration in a minimal number of steps. When the cost function has many local minima, the deterministic algorithms become easily trapped in suboptimal solutions. The simulated annealing method tries to overcome this difficulty by introducting thermal noise in the problem. Here we explore the possibility of implementing search procedures analogous to the quantum tunneling effect. The suggested dynamics is a guided diffusion process of an interactingpopulation of configurations. Different dynamical aspects of the search process are formulated first in a simple one-dimensional tight-binding model with a hierarchical potential. The new algorithm is then applied to the Traveling Salesman Problem. It is demonstrated that the use of interacting, evolving populations of tours representing our “wave packet” leads to systematic improvements and possibly, to the optimal tour. In addition, the structure of the cost function landscape for a given instance becomes locally accessible. The performance of the algorithm and its implications for parallel computing and “genetic” programming are briefly discussed.

[1]  R. A. Fisher,et al.  The Genetical Theory of Natural Selection , 1931 .

[2]  J. P. Secrétan,et al.  Der Saccus endolymphaticus bei Entzündungsprozessen , 1944 .

[3]  J. Beardwood,et al.  The shortest path through many points , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Richard Bellman,et al.  Dynamic Programming Treatment of the Travelling Salesman Problem , 1962, JACM.

[5]  Stuart E. Dreyfus,et al.  Applied Dynamic Programming , 1965 .

[6]  Shen Lin Computer solutions of the traveling salesman problem , 1965 .

[7]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[8]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[9]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[10]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[11]  Kenneth Steiglitz,et al.  On the Complexity of Local Search for the Traveling Salesman Problem , 1977, SIAM J. Comput..

[12]  S. Gould,et al.  Punctuated equilibria: the tempo and mode of evolution reconsidered , 1977, Paleobiology.

[13]  Richard M. Karp,et al.  Probabilistic Analysis of Partitioning Algorithms for the Traveling-Salesman Problem in the Plane , 1977, Math. Oper. Res..

[14]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[15]  Richard M. Karp,et al.  A Patching Algorithm for the Nonsymmetric Traveling-Salesman Problem , 1979, SIAM J. Comput..

[16]  H. Crowder,et al.  Solving Large-Scale Symmetric Travelling Salesman Problems to Optimality , 1980 .

[17]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[18]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[19]  B. Derrida,et al.  Classical Diffusion on a Random Chain , 1982 .

[20]  F. Barahona,et al.  On the exact ground states of three-dimensional Ising spin glasses , 1982 .

[21]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[22]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[23]  Werner Ebeling,et al.  Diffusion and reaction in random media and models of evolution processes , 1984 .

[24]  J. H. Hetherington,et al.  Observations on the statistical iteration of matrices , 1984 .

[25]  E. Bonomi,et al.  The N-City Travelling Salesman Problem: Statistical Mechanics and the Metropolis Algorithm , 1984 .

[26]  C. Bachas Computer-intractability of the frustration model of a spin glass , 1984 .

[27]  John D. Litke,et al.  An improved solution to the traveling salesman problem with thousands of nodes , 1984, CACM.

[28]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[29]  L. Wille,et al.  Computational complexity of the ground-state determination of atomic clusters , 1985 .

[30]  Eugene L. Lawler,et al.  Traveling Salesman Problem , 2016 .

[31]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[32]  B A Huberman,et al.  Ultradiffusion: the relaxation of hierarchical systems , 1985 .

[33]  H. Orland Mean-field theory for optimization problems , 1985 .

[34]  M. Mézard,et al.  Replicas and optimization , 1985 .

[35]  S. Kirkpatrick,et al.  Configuration space analysis of travelling salesman problems , 1985 .

[36]  R. Brady Optimization strategies gleaned from biological evolution , 1985, Nature.

[37]  N-city traveling salesman problem: Optimization by simulated annealings , 1986 .

[38]  P. Anderson,et al.  Application of statistical mechanics to NP-complete problems in combinatorial optimisation , 1986 .

[39]  John H. Holland,et al.  Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems , 1995 .

[40]  M. Mézard,et al.  A replica analysis of the travelling salesman problem , 1986 .

[41]  Levin,et al.  Cooling-rate dependence for the spin-glass ground-state energy: Implications for optimization by simulated annealing. , 1986, Physical review letters.

[42]  N. Sourlas Statistical mechanics and the travelling Salesman problem , 1986 .

[43]  Zhang Diffusion in a random potential: Hopping as a dynamical consequence of localization. , 1986, Physical review letters.

[44]  Giorgio Parisi,et al.  Mean-Field Equations for the Matching and the Travelling Salesman Problems , 1986 .

[45]  G. Baskaran,et al.  On the statistical mechanics of the traveling salesman problem , 1986 .

[46]  Zhang,et al.  Scaling of directed polymers in random media. , 1987, Physical review letters.

[47]  W. Ebeling,et al.  Boltzmann and Darwin strategies in complex optimization , 1987 .

[48]  P. Wolynes,et al.  Spin glasses and the statistical mechanics of protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Würtz,et al.  Schrödinger problem for hierarchical heterostructures. , 1987, Physical review. B, Condensed matter.

[50]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[51]  DAVID JOHNSON,et al.  More approaches to the travelling salesman guide , 1987, Nature.

[52]  Richard Durbin,et al.  An analogue approach to the travelling salesman problem using an elastic net method , 1987, Nature.

[53]  M. Parrinello,et al.  The structure of selenium clusters — Se3 TO Se8 , 1987 .

[54]  Engel,et al.  Comment on "Diffusion in a random potential: Hopping as a dynamical consequence of localization" , 1987, Physical review letters.

[55]  A. Aharony,et al.  Anomalous Diffusion, Superlocalization and Hopping Conductivity on Fractal Media , 1987 .

[56]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[57]  Li,et al.  Size and location of the largest current in a random resistor network. , 1987, Physical review. B, Condensed matter.

[58]  S. Rees,et al.  Criteria for an optimum simulated annealing schedule for problems of the travelling salesman type , 1987 .

[59]  Quantum states of hierarchical systems. , 1987, Physical review. A, General physics.

[60]  Wuwell Liao Replica symmetric solutions of the graph-bipartitioning problem with fixed, finite valence , 1988 .

[61]  L. Pastur,et al.  Introduction to the Theory of Disordered Systems , 1988 .

[62]  B. Huberman,et al.  Vibrational properties of hierarchical systems , 1988 .

[63]  D. Sherrington,et al.  Graph partitioning and dilute spin glasses: the minimum cost solution , 1988 .

[64]  T. Nieuwenhuizen Disorder-induced first-order wetting transitions in two dimensions , 1988 .

[65]  Critical eigenfunctions in a quantum hierarchical system , 1988 .

[66]  M. Padberg,et al.  Addendum: Optimization of a 532-city symmetric traveling salesman problem by branch and cut , 1990 .

[67]  Nicos Christofides Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem , 1976, Operations Research Forum.