New complexity results about Nash equilibria

We provide a single reduction that demonstrates that in normal-form games: (1) it is -complete to determine whether Nash equilibria with certain natural properties exist (these results are similar to those obtained by Gilboa and Zemel [Gilboa, I., Zemel, E., 1989. Nash and correlated equilibria: Some complexity considerations. Games Econ. Behav. 1, 80-93]), (2) more significantly, the problems of maximizing certain properties of a Nash equilibrium are inapproximable (unless ), and (3) it is -hard to count the Nash equilibria. We also show that determining whether a pure-strategy Bayes-Nash equilibrium exists in a Bayesian game is -complete, and that determining whether a pure-strategy Nash equilibrium exists in a Markov (stochastic) game is -hard even if the game is unobserved (and that this remains -hard if the game has finite length). All of our hardness results hold even if there are only two players and the game is symmetric.

[1]  Xiaotie Deng,et al.  Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[2]  David Lichtenstein,et al.  GO Is Polynomial-Space Hard , 1980, JACM.

[3]  Tuomas Sandholm,et al.  Algorithms for Rationalizability and CURB Sets , 2006, AAAI.

[4]  H. Kuk On equilibrium points in bimatrix games , 1996 .

[5]  A. McLennan,et al.  Generic 4 x 4 Two Person Games Have at Most 15 Nash Equilibria , 1999 .

[6]  Vincent Conitzer,et al.  Complexity of (iterated) dominance , 2005, EC '05.

[7]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Eitan Zemel,et al.  Nash and correlated equilibria: Some complexity considerations , 1989 .

[9]  Elchanan Ben-Porath The complexity of computing a best response automaton in repeated games with mixed strategies , 1990 .

[10]  C. Papadimitriou On platers with a bounded number of states , 1992 .

[11]  Christos H. Papadimitriou,et al.  Three-Player Games Are Hard , 2005, Electron. Colloquium Comput. Complex..

[12]  D. Koller,et al.  Efficient Computation of Equilibria for Extensive Two-Person Games , 1996 .

[13]  Philip Wolfe,et al.  Contributions to the theory of games , 1953 .

[14]  M. J. Sobel Noncooperative Stochastic Games , 1971 .

[15]  John Nachbar,et al.  Non-computable strategies and discounted repeated games , 1996 .

[16]  Rahul Savani,et al.  Hard‐to‐Solve Bimatrix Games , 2006 .

[17]  Bernhard von Stengel,et al.  Computing Normal Form Perfect Equilibria for Extensive Two-Person Games , 2002 .

[18]  Daniel M. Kane,et al.  On the complexity of two-player win-lose games , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[19]  Daphne Koller,et al.  Multi-Agent Influence Diagrams for Representing and Solving Games , 2001, IJCAI.

[20]  Vincent Conitzer,et al.  A Generalized Strategy Eliminability Criterion and Computational Methods for Applying It , 2005, AAAI.

[21]  Peter Bro Miltersen,et al.  Computing sequential equilibria for two-player games , 2006, SODA '06.

[22]  James B. Orlin,et al.  The complexity of dynamic languages and dynamic optimization problems , 1981, STOC '81.

[23]  Yoav Shoham,et al.  Simple search methods for finding a Nash equilibrium , 2004, Games Econ. Behav..

[24]  Xi Chen,et al.  3-NASH is PPAD-Complete , 2005, Electron. Colloquium Comput. Complex..

[25]  Christos H. Papadimitriou,et al.  Algorithms, Games, and the Internet , 2001, ICALP.

[26]  V. Knoblauch Computable Strategies for Repeated Prisoner's Dilemma , 1994 .

[27]  Aranyak Mehta,et al.  Playing large games using simple strategies , 2003, EC '03.

[28]  Robert J. Aumann,et al.  16. Acceptable Points in General Cooperative n-Person Games , 1959 .

[29]  Tuomas Sandholm,et al.  Lossless abstraction of imperfect information games , 2007, JACM.

[30]  Javier Peña,et al.  Gradient-Based Algorithms for Finding Nash Equilibria in Extensive Form Games , 2007, WINE.

[31]  D. Koller,et al.  The complexity of two-person zero-sum games in extensive form , 1992 .

[32]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[33]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[34]  Aranyak Mehta,et al.  Progress in approximate nash equilibria , 2007, EC '07.

[35]  Vincent Conitzer,et al.  Mixed-Integer Programming Methods for Finding Nash Equilibria , 2005, AAAI.

[36]  Moshe Tennenholtz,et al.  Local-Effect Games , 2003, IJCAI.

[37]  Michael L. Littman,et al.  Graphical Models for Game Theory , 2001, UAI.

[38]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[39]  Kevin Leyton-Brown,et al.  Computing Nash Equilibria of Action-Graph Games , 2004, UAI.

[40]  Eitan Zemel,et al.  The Complexity of Eliminating Dominated Strategies , 1993, Math. Oper. Res..

[41]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[42]  Paul W. Goldberg,et al.  The complexity of computing a Nash equilibrium , 2006, STOC '06.

[43]  L. Shapley,et al.  Stochastic Games* , 1953, Proceedings of the National Academy of Sciences.

[44]  Georg Gottlob,et al.  Pure Nash equilibria: hard and easy games , 2003, TARK '03.

[45]  Christos H. Papadimitriou,et al.  Computing correlated equilibria in multi-player games , 2005, STOC '05.

[46]  B. Stengel,et al.  Efficient Computation of Behavior Strategies , 1996 .

[47]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[48]  John N. Tsitsiklis,et al.  The Complexity of Markov Decision Processes , 1987, Math. Oper. Res..

[49]  A. McLennan The Expected Number of Nash Equilibria of a Normal Form Game , 2005 .

[50]  Todd R. Kaplan,et al.  A Program for Finding Nash Equilibria , 1993 .