Efficient compression of quantum braided circuits

Mapping a quantum algorithm to any practical large-scale quantum computer will require a sequence of compilations and optimizations. At the level of fault-tolerant encoding, one likely requirement of this process is the translation into a topological circuit, for which braided circuits represent one candidate model. Given the large overhead associated with encoded circuits, it is paramount to reduce their size in terms of computation time and qubit number through circuit compression. While these optimizations have typically been performed in the language of $3$-dimensional diagrams, such a representation does not allow an efficient, general and scalable approach to reduction or verification. We propose the use of the ZX-calculus as an intermediate language for braided circuit compression, demonstrating advantage by comparing results using this approach with those previously obtained for the compression of $| A\rangle$ and $| Y\rangle$ state distillation circuits. We then provide a rough benchmark of our method against a small set of Clifford+T circuits, yielding compression percentages of $\sim77$\%. Our results suggest that the overheads of braided, defect-based circuits are comparable to those of their lattice-surgery counterparts, restoring the potential of this model for surface code quantum computation.

[1]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[2]  Austin G. Fowler,et al.  Time-optimal quantum computation , 2012, 1210.4626.

[3]  Miriam Backens,et al.  Making the stabilizer ZX-calculus complete for scalars , 2015, 1507.03854.

[4]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[5]  Alexandru Paler,et al.  Design Methods for Reliable Quantum Circuits , 2015 .

[6]  Cody Jones,et al.  Multilevel distillation of magic states for quantum computing , 2012, 1210.3388.

[7]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  Austin G. Fowler,et al.  Topological cluster state quantum computing , 2008, Quantum Inf. Comput..

[9]  Miriam Backens,et al.  The ZX-calculus is complete for the single-qubit Clifford+T group , 2014, QPL.

[10]  Simon J. Devitt,et al.  Synthesis of topological quantum circuits , 2012, 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[11]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[12]  Bob Coecke,et al.  Interacting Quantum Observables , 2008, ICALP.

[13]  A. Fowler,et al.  A bridge to lower overhead quantum computation , 2012, 1209.0510.

[14]  Simon J. Devitt,et al.  Specification format and a verification method of fault-tolerant quantum circuits , 2017, Physical Review A.

[15]  Dominic Horsman,et al.  The ZX calculus is a language for surface code lattice surgery , 2017, Quantum.

[16]  Stefan Zohren,et al.  Graphical structures for design and verification of quantum error correction , 2016, Quantum Science and Technology.

[17]  Cody Jones,et al.  Low-overhead constructions for the fault-tolerant Toffoli gate , 2012, 1212.5069.

[18]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[19]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[20]  Quanlong Wang,et al.  ZX-Rules for 2-Qubit Clifford+T Quantum Circuits , 2018, RC.

[21]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[22]  Robert Wille,et al.  Online scheduled execution of quantum circuits protected by surface codes , 2017, Quantum Inf. Comput..

[23]  Emanuel Knill,et al.  Magic-state distillation with the four-qubit code , 2012, Quantum Inf. Comput..

[24]  Adam Paetznick,et al.  Universal fault-tolerant quantum computation with only transversal gates and error correction. , 2013, Physical review letters.

[25]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[26]  Cody Jones,et al.  Distillation protocols for Fourier states in quantum computing , 2013, Quantum Inf. Comput..

[27]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[28]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[29]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[30]  Austin G. Fowler,et al.  Efficient magic state factories with a catalyzed|CCZ⟩to2|T⟩transformation , 2018, Quantum.

[31]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[32]  B. Coecke Quantum picturalism , 2009, 0908.1787.

[33]  Michael H. Freedman,et al.  Projective Plane and Planar Quantum Codes , 2001, Found. Comput. Math..

[34]  Margaret Martonosi,et al.  Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures , 2018, 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[35]  Austin G. Fowler,et al.  Quantum circuit optimization by topological compaction in the surface code , 2013, 1304.2807.

[36]  Aleks Kissinger,et al.  Reducing T-count with the ZX-calculus , 2019, 1903.10477.

[37]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[38]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[39]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[40]  Dominic Horsman,et al.  Quantum picturalism for topological cluster-state computing , 2011, 1101.4722.

[41]  Bryan Eastin,et al.  Distilling one-qubit magic states into Toffoli states , 2012, 1212.4872.