A Segment-based Registration Technique for Visual-IR Images

A new general registration method for images of different nature is presented in this paper. As grey-levels or textures cannot be used for the registration of images from separate spectral bands, an edge-based method has been developed. Edge images are processed to extract straight linear segments, which are then grouped to form triangles. A set of candidate transformations is determined by matching triangles from the source and destination images. The transformations are then evaluated by matching the transformed set of source segments to the set of destination segments. As the coincidence of vertices or edge overlapping cannot be assumed in the registration of images of different nature, a new function for evaluating the matching quality between source and destination segments which does not rely on overlapping measures is proposed. Results and subjective evaluation of the registration of visual and thermal infrared images are presented.

[1]  S. Mason,et al.  Image alignment by line triples , 1992 .

[2]  Generación semi-automática de mosaicos. Aplicación de técnicas de fusión de imágenes , 1998 .

[3]  J. D. Dunlop,et al.  Image Matching Using Spatial Frequency Signatures , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[4]  Sanjit K. Mitra,et al.  Efficient approach for the detection of diffuse edges , 1996 .

[5]  Narendra Ahuja,et al.  Integrated Matching and Segmentation of Multiple Features in Two Views , 1995, Comput. Vis. Image Underst..

[6]  M S Alam,et al.  Fast registration and reconstruction of aliased low-resolution frames by use of a modified maximum-likelihood approach. , 1998, Applied optics.

[7]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[8]  Jan J. Gerbrands,et al.  Method for matching general stereo planar curves , 1995, Image Vis. Comput..

[9]  Wilfried Brauer,et al.  Intensity- and Gradient-Based Stereo Matching Using Hierarchical Gaussian Basis Functions , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Radu Horaud,et al.  Stereo Correspondence Through Feature Grouping and Maximal Cliques , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Ramakant Nevatia,et al.  Segment-based stereo matching , 1985, Comput. Vis. Graph. Image Process..

[12]  Kuo-Chin Fan,et al.  Image Registration Using a New Edge-Based Approach , 1997, Comput. Vis. Image Underst..

[13]  Hui Henry Li,et al.  Automatic visual/IR image registration , 1996 .

[14]  Rama Chellappa,et al.  A computational vision approach to image registration , 1993, IEEE Trans. Image Process..

[15]  Patrick Gros,et al.  Using Local Planar Geometric Invariants to Match and Model Images of Line Segments , 1998, Comput. Vis. Image Underst..

[16]  Hitoshi Saji,et al.  Energy minimization-based approach to image modification for assembling subpictures , 1998 .

[17]  Roberto Cipolla,et al.  Image Registration Using Multi-Scale Texture Moments , 1994, BMVC.

[18]  Zhengyou Zhang Estimating Motion and Structure from Correspondences of Line Segments between Two Perspective Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Wen-Hao Wang,et al.  Image registration by control points pairing using the invariant properties of line segments , 1997, Pattern Recognit. Lett..

[20]  J-P Muller,et al.  Automatic Seed Point Generation For Stereo Matching And Multi-image Registration , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.

[21]  B. N. Chatterji,et al.  An FFT-based technique for translation, rotation, and scale-invariant image registration , 1996, IEEE Trans. Image Process..

[22]  Behrooz Kamgar-Parsi,et al.  Matching Sets of 3D Line Segments with Application to Polygonal Arc Matching , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  G. F. McLean,et al.  Line-Based Correction of Radial Lens Distortion , 1997, CVGIP Graph. Model. Image Process..

[24]  Jan Flusser,et al.  Degraded Image Analysis: An Invariant Approach , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  David J. Kriegman,et al.  Structure and Motion from Line Segments in Multiple Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Atsushi Imiya,et al.  Planar motion detection by randomized triangle matching , 1997, Pattern Recognit. Lett..

[28]  A. Bijaoui,et al.  Geometrical registration of images: the multiresolution approach , 1993 .

[29]  Tianxu Zhang,et al.  Rotation and scale change invariant point pattern relaxation matching by the Hopfield neural network , 1997 .

[30]  Ronda Venkateswarlu,et al.  Analysis of image registration algorithms for infrared images , 1992, Defense, Security, and Sensing.