New Bacillus thuringiensis toxin combinations for biological control of lepidopteran larvae.

[1]  S. Gill,et al.  Oligomerization is a key step in Cyt1Aa membrane insertion and toxicity but not necessary to synergize Cry11Aa toxicity in Aedes aegypti larvae. , 2013, Environmental microbiology.

[2]  M. Diaz-Mendoza,et al.  Intermolecular interaction between Cry2Aa and Cyt1Aa and its effect on larvicidal activity against Culex quinquefasciatus. , 2013, Journal of microbiology and biotechnology.

[3]  D. Bideshi,et al.  Cyt1Aa from Bacillus thuringiensis subsp. israelensis enhances mosquitocidal activity of B. thuringiensis subsp. kurstaki HD-1 against Aedes aegypti but not Culex quinquefasciatus. , 2013, Journal of microbiology and biotechnology.

[4]  M. Diaz-Mendoza,et al.  The 20‐kDa chaperone‐like protein of Bacillus thuringiensis ssp. israelensis enhances yield, crystal size and solubility of Cry3A , 2012, Letters in applied microbiology.

[5]  N. Ayyadurai,et al.  Synergistic activity of Cyt1A from Bacillus thuringiensis subsp. israelensis with Bacillus sphaericus B101 H5a5b against Bacillus sphaericus B101 H5a5b-resistant strains of Anopheles stephensi Liston (Diptera: Culicidae) , 2011, Parasitology Research.

[6]  M. Tonolla,et al.  Distribution of Bacillus thuringiensis subsp. israelensis in Soil of a Swiss Wetland Reserve after 22 Years of Mosquito Control , 2011, Applied and Environmental Microbiology.

[7]  M. Soberón,et al.  Binding of Bacillus thuringiensis subsp. israelensis Cry4Ba to Cyt1Aa has an important role in synergism , 2011, Peptides.

[8]  A. Zaritsky,et al.  Expression in Escherichia coli of the Native cyt1Aa from Bacillus thuringiensis subsp. israelensis , 2010, Applied and Environmental Microbiology.

[9]  Hana Trigui,et al.  Evidence of the Importance of the Met115 for Bacillus thuringiensis subsp. israelensis Cyt1Aa Protein Cytolytic Activity in Escherichia coli , 2008, Molecular biotechnology.

[10]  S. Boussiba,et al.  Larvicidal activities against agricultural pests of transgenic Escherichia coli expressing combinations of four genes from Bacillus thuringiensis , 2007, Archives of Microbiology.

[11]  Ziniu Yu,et al.  Safety assessment of transgenic Bacillus thuringiensis with VIP insecticidal protein gene by feeding studies. , 2007, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[12]  G. Smagghe,et al.  Lethal and Sublethal Effects of Methoxyfenozide and Spinosad onSpodoptera littoralis (Lepidoptera: Noctuidae) , 2007, Journal of economic entomology.

[13]  D. Bideshi,et al.  The 20-kDa Protein of Bacillus thuringiensis subsp. israelensis Enhances Bacillus sphaericus 2362 Bin Toxin Synthesis , 2007, Current Microbiology.

[14]  Ming Liu,et al.  Cytolytic Toxin Cyt1Aa of Bacillus thuringiensis Synergizes the Mosquitocidal Toxin Mtx1 of Bacillus sphaericus , 2006, Bioscience, biotechnology, and biochemistry.

[15]  S. Jaoua,et al.  Evidence of DNA rearrangements in the 128-kilobase pBtoxis plasmid of Bacillus thuringiensis israelensis , 2006, Molecular biotechnology.

[16]  N. Zouari,et al.  Evidence of the effect of δ-endotoxin ratio in Bacillus thuringiensis crystals on the toxicity against Ephestia kuehniella , 2006 .

[17]  Ahmed Rebai,et al.  Response of larval Ephestia kuehniella (Lepidoptera: Pyralidae) to individual Bacillus thuringiensis kurstaki toxins and toxin mixtures , 2005, Biological Control.

[18]  B. Federici,et al.  Cyt1A of Bacillus thuringiensis Delays Evolution of Resistance to Cry11A in the Mosquito Culex quinquefasciatus , 2005, Applied and Environmental Microbiology.

[19]  N. Zouari,et al.  Improvement of bioinsecticides production through mutagenesis of Bacillus thuringiensis by u.v. and nitrous acid affecting metabolic pathways and/or delta‐endotoxin synthesis , 2004, Journal of applied microbiology.

[20]  N. Zouari,et al.  Cloning and nucleotide sequence of a novel cry1Aa-type gene from Bacillus thuringiensis subsp. kurstaki , 1999, Biotechnology Letters.

[21]  Ziniu Yu,et al.  Enhanced Expression of Insecticidal Crystal Proteins in Wild Bacillus thuringiensis Strains by a Heterogeneous Protein P20 , 2004, Current Microbiology.

[22]  S. Jaoua,et al.  Cloning and study of the expression of a novel cry1Ia‐type gene from Bacillus thuringiensis subsp. kurstaki , 2003, Journal of applied microbiology.

[23]  W. Walton,et al.  Deletion of the Cry11A or the Cyt1A toxin from Bacillus thuringiensis subsp. israelensis: effect on toxicity against resistant Culex quinquefasciatus (Diptera: Culicidae). , 2003, Journal of invertebrate pathology.

[24]  S. Jaoua,et al.  Identification of a promoter for the crystal protein-encoding gene cry1Ia from Bacillus thuringiensis subsp. kurstaki. , 2002, FEMS microbiology letters.

[25]  Ziniu Yu,et al.  Effects of the 20-Kilodalton Helper Protein on Cry1Ac Production and Spore Formation in Bacillus thuringiensis , 2001, Applied and Environmental Microbiology.

[26]  N. Crickmore,et al.  Cyt1Aa from Bacillus thuringiensissubsp. israelensis Is Toxic to the Diamondback Moth,Plutella xylostella, and Synergizes the Activity of Cry1Ac towards a Resistant Strain , 2001, Applied and Environmental Microbiology.

[27]  M. Sedlák,et al.  Regulation by Overlapping Promoters of the Rate of Synthesis and Deposition into Crystalline Inclusions ofBacillus thuringiensis δ-Endotoxins , 2000, Journal of bacteriology.

[28]  J. Ibarra,et al.  Antagonism between Cry1Ac1 and Cyt1A1 Toxins ofBacillus thuringiensis , 1999, Applied and Environmental Microbiology.

[29]  L. Bauer,et al.  Cyt1Aa Protein of Bacillus thuringiensisIs Toxic to the Cottonwood Leaf Beetle, Chrysomela scripta, and Suppresses High Levels of Resistance to Cry3Aa , 1998, Applied and Environmental Microbiology.

[30]  W. Moar,et al.  Differential effects of helper proteins encoded by the cry2A and cry11A operons on the formation of Cry2A inclusions in Bacillus thuringiensis. , 1998, FEMS microbiology letters.

[31]  S. Jansens,et al.  Changes in Permeability of Brush Border Membrane Vesicles fromSpodoptera littoralis Midgut Induced by Insecticidal Crystal Proteins from Bacillus thuringiensis , 1998, Applied and Environmental Microbiology.

[32]  N. Zouari,et al.  Nutritional requirements of a strain of bacillus thuringiensis subsp. kurstaki and use of gruel hydrolysate for the formulation of a new medium for δ-endotoxin production , 1998 .

[33]  G. Georghiou,et al.  CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quinquefasciatus. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[34]  N. Zouari,et al.  Study of the δ-endotoxins produced by three recently isolated strains of Bacillus thuringiensis , 1996 .

[35]  B. Federici,et al.  A 20-kilodalton protein preserves cell viability and promotes CytA crystal formation during sporulation in Bacillus thuringiensis , 1993, Journal of bacteriology.

[36]  H. R. Whiteley,et al.  Effect of a 20-kilodalton protein from Bacillus thuringiensis subsp. israelensis on production of the CytA protein by Escherichia coli , 1991, Journal of bacteriology.

[37]  B. Tabashnik,et al.  Field Development of Resistance to Bacillus thuringiensis in Diamondback Moth (Lepidoptera: Plutellidae) , 1990 .

[38]  H. R. Whiteley,et al.  A 20-kilodalton protein is required for efficient production of the Bacillus thuringiensis subsp. israelensis 27-kilodalton crystal protein in Escherichia coli , 1989, Journal of bacteriology.

[39]  Phyllis A. W. Martin,et al.  Selective Process for Efficient Isolation of Soil Bacillus spp , 1987, Applied and environmental microbiology.

[40]  H. R. Whiteley,et al.  Expression in Escherichia coli of a cloned crystal protein gene of Bacillus thuringiensis subsp. israelensis , 1987, Journal of bacteriology.

[41]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[42]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[43]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.