Hardwiring Stem Cell Communication through Tissue Structure

Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function, but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues.

[1]  J. Lippincott-Schwartz,et al.  Intravital Imaging Reveals Ghost Fibers as Architectural Units Guiding Myogenic Progenitors during Regeneration. , 2016, Cell stem cell.

[2]  M. Merad,et al.  Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche , 2011, The Journal of experimental medicine.

[3]  T. Sun,et al.  Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis , 1990, Cell.

[4]  T. Kinashi,et al.  Steel factor and c-kit regulate cell-matrix adhesion. , 1994, Blood.

[5]  S. Itzkovitz,et al.  A Critical Role for the Wnt Effector Tcf4 in Adult Intestinal Homeostatic Self-Renewal , 2012, Molecular and Cellular Biology.

[6]  J. Leatherman,et al.  Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis and nonautonomously influences germline stem cell self-renewal. , 2008, Cell stem cell.

[7]  N. Barker Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration , 2013, Nature Reviews Molecular Cell Biology.

[8]  E. Fuchs,et al.  A family business: stem cell progeny join the niche to regulate homeostasis , 2012, Nature Reviews Molecular Cell Biology.

[9]  Panteleimon Rompolas,et al.  Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration , 2012, Nature.

[10]  Allon M Klein,et al.  Intestinal Stem Cell Replacement Follows a Pattern of Neutral Drift , 2010, Science.

[11]  S. Millar,et al.  Fgf9 from dermal γδ T cells induces hair follicle neogenesis after wounding , 2013, Nature Medicine.

[12]  S. Morrison,et al.  The bone marrow niche for haematopoietic stem cells , 2014, Nature.

[13]  Ting Xie,et al.  decapentaplegic Is Essential for the Maintenance and Division of Germline Stem Cells in the Drosophila Ovary , 1998, Cell.

[14]  P. Rojas-Ríos,et al.  Cytoneme-Mediated Delivery of Hedgehog Regulates the Expression of Bone Morphogenetic Proteins to Maintain Germline Stem Cells in Drosophila , 2012, PLoS biology.

[15]  A. Bergman,et al.  Megakaryocytes regulate hematopoietic stem cell quiescence via Cxcl4 secretion , 2013, Nature Medicine.

[16]  George Q. Daley,et al.  Biomechanical forces promote embryonic haematopoiesis , 2009, Nature.

[17]  Hans Clevers,et al.  Intestinal Crypt Homeostasis Results from Neutral Competition between Symmetrically Dividing Lgr5 Stem Cells , 2010, Cell.

[18]  A. Nagler,et al.  HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. , 2003, The Journal of clinical investigation.

[19]  J. Kimble,et al.  Scratching the niche that controls Caenorhabditis elegans germline stem cells. , 2009, Seminars in cell & developmental biology.

[20]  M. Taketo,et al.  β-Catenin Activation Regulates Tissue Growth Non–Cell Autonomously in the Hair Stem Cell Niche , 2014, Science.

[21]  S. Thrun,et al.  Substrate Elasticity Regulates Skeletal Muscle Stem Cell Self-Renewal in Culture , 2010, Science.

[22]  C. S. Chen,et al.  Geometric control of cell life and death. , 1997, Science.

[23]  J. Frampton,et al.  The glycoprotein IIb molecule is expressed on early murine hematopoietic progenitors and regulates their numbers in sites of hematopoiesis. , 2003, Immunity.

[24]  J. Roes,et al.  Key roles for transforming growth factor beta in melanocyte stem cell maintenance. , 2010, Cell stem cell.

[25]  Jianjun Cheng,et al.  Role of mechanical factors in fate decisions of stem cells. , 2011, Regenerative medicine.

[26]  S. Orkin,et al.  The journey of developing hematopoietic stem cells , 2006, Development.

[27]  Matthew J. Vincent,et al.  p63+Krt5+ distal airway stem cells are essential for lung regeneration , 2014, Nature.

[28]  Maria Barna,et al.  Specialized filopodia direct long-range transport of Shh during vertebrate tissue patterning , 2013, Nature.

[29]  Hilary L. Ashe,et al.  Type IV collagens regulate BMP signalling in Drosophila , 2008, Nature.

[30]  A. Spradling,et al.  A niche maintaining germ line stem cells in the Drosophila ovary. , 2000, Science.

[31]  Ning Wang,et al.  Soft Substrates Promote Homogeneous Self-Renewal of Embryonic Stem Cells via Downregulating Cell-Matrix Tractions , 2010, PloS one.

[32]  I. Weissman,et al.  Niche recycling through division-independent egress of hematopoietic stem cells , 2009 .

[33]  Christopher S. Chen,et al.  Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. , 2004, Developmental cell.

[34]  L. Zon,et al.  Hematopoietic Stem Cell Arrival Triggers Dynamic Remodeling of the Perivascular Niche , 2015, Cell.

[35]  H. Pasolli,et al.  A two-step mechanism for stem cell activation during hair regeneration. , 2009, Cell stem cell.

[36]  G. Cotsarelis,et al.  Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. , 2004, Differentiation; research in biological diversity.

[37]  R. Russell,et al.  Intestinal label-retaining cells are secretory precursors expressing Lgr5 , 2013, Nature.

[38]  Caterina Minelli,et al.  Substrate stiffness affects early differentiation events in embryonic stem cells. , 2009, European cells & materials.

[39]  A. Spradling,et al.  Multipotent Drosophila Intestinal Stem Cells Specify Daughter Cell Fates by Differential Notch Signaling , 2007, Science.

[40]  L. Gilboa,et al.  Coordinated Regulation of Niche and Stem Cell Precursors by Hormonal Signaling , 2011, PLoS biology.

[41]  R. Shivdasani,et al.  Wnt Secretion from Epithelial Cells and Subepithelial Myofibroblasts Is Not Required in the Mouse Intestinal Stem Cell Niche In Vivo , 2014, Stem cell reports.

[42]  Mark R. Looney,et al.  Lineage-negative Progenitors Mobilize to Regenerate Lung Epithelium after Major Injury , 2014, Nature.

[43]  Benjamin D. Medoff,et al.  Dedifferentiation of committed epithelial cells into stem cells in vivo , 2013, Nature.

[44]  A. Miyajima,et al.  Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. , 2014, Cell stem cell.

[45]  D. E. Discher,et al.  Matrix elasticity directs stem cell lineage — Soluble factors that limit osteogenesis , 2009 .

[46]  M. Longaker,et al.  Wound healing: an update. , 2014, Regenerative medicine.

[47]  Hans Clevers,et al.  Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts , 2011, Nature.

[48]  Piul S. Rabbani,et al.  Direct migration of follicular melanocyte stem cells to the epidermis after wounding or UVB irradiation is dependent on Mc1r signaling , 2013, Nature Medicine.

[49]  Piul S. Rabbani,et al.  Coordinated Activation of Wnt in Epithelial and Melanocyte Stem Cells Initiates Pigmented Hair Regeneration , 2011, Cell.

[50]  M. Goodell,et al.  Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments , 2015, Nature Reviews Molecular Cell Biology.

[51]  C. Dieterich,et al.  Integrin-linked kinase regulates the niche of quiescent epidermal stem cells , 2015, Nature Communications.

[52]  谷村 心太郎 Hair follicle stem cells provide a functional niche for melanocyte stem cells , 2011 .

[53]  E. Fuchs,et al.  Transit-Amplifying Cells Orchestrate Stem Cell Activity and Tissue Regeneration , 2014, Cell.

[54]  R. Isseroff,et al.  Wound re-epithelialization: modulating keratinocyte migration in wound healing. , 2007, Frontiers in bioscience : a journal and virtual library.

[55]  M. Buszczak,et al.  Nanotubes mediate niche-stem cell signaling in the Drosophila testis , 2015, Nature.

[56]  U. V. von Andrian,et al.  Hematopoietic stem and progenitor cell trafficking. , 2011, Trends in immunology.

[57]  T. Xie,et al.  Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis , 2004, Development.

[58]  C. Culmsee,et al.  A Dual Role for the SDF-1/CXCR4 Chemokine Receptor System in Adult Brain: Isoform-Selective Regulation of SDF-1 Expression Modulates CXCR4-Dependent Neuronal Plasticity and Cerebral Leukocyte Recruitment after Focal Ischemia , 2002, The Journal of Neuroscience.

[59]  I. Mazo,et al.  Adhesion and homing of blood‐borne cells in bone marrow microvessels , 1999, Journal of leukocyte biology.

[60]  Richard O. Hynes,et al.  Hematopoietic Progenitor Cell Rolling in Bone Marrow Microvessels: Parallel Contributions by Endothelial Selectins and Vascular Cell Adhesion Molecule 1 , 1998, The Journal of experimental medicine.

[61]  B. Morgan,et al.  Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline , 2013, Journal of Cell Science.

[62]  C. Alexandre,et al.  Patterning and growth control by membrane-tethered Wingless , 2013, Nature.

[63]  J. Timmer,et al.  Supporting Online Material Material and Methods , 2022 .

[64]  M. Vadas,et al.  Cytokines increase human hemopoietic cell adhesiveness by activation of very late antigen (VLA)-4 and VLA-5 integrins , 1995, The Journal of experimental medicine.

[65]  Franck Letourneur,et al.  Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1) , 2012, Proceedings of the National Academy of Sciences.

[66]  Gerald B Call,et al.  Notch signaling controls germline stem cell niche formation in the Drosophila ovary , 2007, Development.

[67]  J. White,et al.  On the control of germ cell development in Caenorhabditis elegans. , 1981, Developmental biology.

[68]  E. Fuchs,et al.  Hair follicle stem cells are specified and function in early skin morphogenesis. , 2008, Cell stem cell.

[69]  Allon M. Klein,et al.  Clonal dynamics of native haematopoiesis , 2014, Nature.

[70]  L. Miller,et al.  dsRNA Released by Tissue Damage Activates TLR3 to Drive Skin Regeneration. , 2015, Cell stem cell.

[71]  Joerg Huelsken,et al.  Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. , 2007, Molecular and cellular biology.

[72]  B. Thiers Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding , 2008 .

[73]  Ulrich H. von Andrian,et al.  Immunosurveillance by Hematopoietic Progenitor Cells Trafficking through Blood, Lymph, and Peripheral Tissues , 2007, Cell.

[74]  P. Ingham,et al.  Regulation of Stem Cell Maintenance and Transit Amplifying Cell Proliferation by TGF-β Signaling in Drosophila Spermatogenesis , 2003, Current Biology.

[75]  S. Sen,et al.  Matrix Elasticity Directs Stem Cell Lineage Specification , 2006, Cell.

[76]  R. Schofield The relationship between the spleen colony-forming cell and the haemopoietic stem cell. , 1978, Blood cells.

[77]  Xi C. He,et al.  Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells , 2014, Nature Medicine.

[78]  R. Atit,et al.  Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration , 2012, The Journal of investigative dermatology.

[79]  J. Folkman,et al.  Role of cell shape in growth control , 1978, Nature.

[80]  R. Lehmann,et al.  Repression of Primordial Germ Cell Differentiation Parallels Germ Line Stem Cell Maintenance , 2004, Current Biology.

[81]  H. Clevers,et al.  Lgr6 Marks Stem Cells in the Hair Follicle That Generate All Cell Lineages of the Skin , 2010, Science.

[82]  V. Broudy,et al.  Stem cell factor modulates avidity of alpha 4 beta 1 and alpha 5 beta 1 integrins expressed on hematopoietic cell lines. , 1995, Blood.

[83]  Allon M. Klein,et al.  Interfollicular Epidermal Stem Cells Self-Renew via Autocrine Wnt Signaling , 2013, Science.

[84]  Andreas Trumpp,et al.  Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-Renewal during Homeostasis and Repair , 2008, Cell.

[85]  Satoru Kobayashi,et al.  Drosophila glypicans regulate the germline stem cell niche , 2009, The Journal of cell biology.

[86]  P. Morrison,et al.  CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo , 2003, Development.

[87]  H. Ashe,et al.  Cease and desist: modulating short‐range Dpp signalling in the stem‐cell niche , 2011, EMBO reports.

[88]  J. Zavadil,et al.  chinmo is a functional effector of the JAK/STAT pathway that regulates eye development, tumor formation, and stem cell self-renewal in Drosophila. , 2010, Developmental cell.

[89]  Dennis E. Discher,et al.  Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation , 2013, Science.

[90]  A. Joyner,et al.  Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. , 2011, Cell stem cell.

[91]  D. Ingber Extracellular matrix and cell shape: Potential control points for inhibition of angiogenesis , 1991, Journal of cellular biochemistry.

[92]  E. Fuchs,et al.  WNT-SHH Antagonism Specifies and Expands Stem Cells prior to Niche Formation , 2016, Cell.

[93]  I. Weissman,et al.  Circulation and Chemotaxis of Fetal Hematopoietic Stem Cells , 2004, PLoS biology.

[94]  E. Morrisey,et al.  Distinct functions for Wnt/β-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. , 2013, Cell stem cell.

[95]  E. Brown,et al.  Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor , 2006, Nature.

[96]  E. Matunis,et al.  Regeneration of Male Germline Stem Cells by Spermatogonial Dedifferentiation in Vivo , 2004, Science.

[97]  Borja Saez,et al.  Parent stem cells can serve as niches for their own daughter cells , 2015, Nature.

[98]  Panteleimon Rompolas,et al.  Spatial organization within a niche as a determinant of stem cell fate , 2013, Nature.

[99]  Sirio Dupont Role of YAP/TAZ in mechanotransduction , 2011 .

[100]  P. Jones,et al.  Switching roles: the functional plasticity of adult tissue stem cells , 2015, The EMBO journal.

[101]  E. Fuchs,et al.  Dynamics between Stem Cells, Niche, and Progeny in the Hair Follicle , 2011, Cell.

[102]  A. Spradling,et al.  Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries , 2004, Nature.

[103]  J. Rossant,et al.  Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts , 2014, Development.

[104]  Zheng Guo,et al.  The glypican Dally is required in the niche for the maintenance of germline stem cells and short-range BMP signaling in the Drosophila ovary , 2009, Development.

[105]  A. Spradling,et al.  Long-term live imaging provides new insight into stem cell regulation and germline-soma coordination in the Drosophila ovary , 2011, Development.

[106]  V. Horsley,et al.  Adipocyte Lineage Cells Contribute to the Skin Stem Cell Niche to Drive Hair Cycling , 2011, Cell.

[107]  E. Hirsch,et al.  Impaired migration but not differentiation of haematopoietic stem cells in the absence of β1 integrins , 1996, Nature.

[108]  R. Paus,et al.  Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells , 2014, PLoS biology.

[109]  A. Oudenaarden,et al.  Dll1+ secretory progenitor cells revert to stem cells upon crypt damage , 2012, Nature Cell Biology.

[110]  Anthony O. Olarerin-George,et al.  Adhesion Regulates MAP Kinase/Ternary Complex Factor Exchange to Control a Proliferative Transcriptional Switch , 2012, Current Biology.

[111]  Joerg Huelsken,et al.  Wnt/β-Catenin Is Essential for Intestinal Homeostasis and Maintenance of Intestinal Stem Cells , 2007, Molecular and Cellular Biology.

[112]  R. Sennett,et al.  Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. , 2012, Seminars in cell & developmental biology.

[113]  A. Spradling,et al.  Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. , 2011, Developmental cell.

[114]  S. Nishikawa,et al.  Dominant role of the niche in melanocyte stem-cell fate determination , 2002, Nature.

[115]  Scott H. Randell,et al.  Basal cells as stem cells of the mouse trachea and human airway epithelium , 2009, Proceedings of the National Academy of Sciences.

[116]  B. Simons,et al.  Dynamic stem cell heterogeneity , 2015, Development.

[117]  L. Mahadevan,et al.  Bending Gradients: How the Intestinal Stem Cell Gets Its Home , 2015, Cell.

[118]  Christopher S. Chen,et al.  Forms, forces, and stem cell fate. , 2014, Current opinion in cell biology.

[119]  Sylvain Brohée,et al.  Distinct contribution of stem and progenitor cells to epidermal maintenance , 2012, Nature.

[120]  P. Bonaldo,et al.  Extracellular matrix: A dynamic microenvironment for stem cell niche , 2014, Biochimica et biophysica acta.

[121]  J. Lévesque,et al.  Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. , 2010, Blood.

[122]  Fei Wang,et al.  Material Properties of the Cell Dictate Stress-induced Spreading and Differentiation in Embryonic Stem Cells Growing Evidence Suggests That Physical Microenvironments and Mechanical Stresses, in Addition to Soluble Factors, Help Direct Mesenchymal-stem-cell Fate. However, Biological Responses to a L , 2022 .

[123]  Irving L. Weissman,et al.  Physiological Migration of Hematopoietic Stem and Progenitor Cells , 2001, Science.

[124]  E. Matunis,et al.  The stem cell niche: lessons from the Drosophila testis , 2011, Development.

[125]  P. Lasko,et al.  The development of germline stem cells in Drosophila. , 2008, Methods in molecular biology.

[126]  Claude Sinner,et al.  Filopodia-based Wnt transport during vertebrate tissue patterning , 2015, Nature Communications.