Machine Learning Systems for Multimodal Affect Recognition

xix

[1]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[2]  Markus Kächele,et al.  The Influence of Annotation, Corpus Design, and Evaluation on the Outcome of Automatic Classification of Human Emotions , 2016, Front. ICT.

[3]  Albert Ali Salah,et al.  Ensemble CCA for Continuous Emotion Prediction , 2014, AVEC '14.

[4]  Markus Kächele,et al.  Paradigms for the Construction and Annotation of Emotional Corpora for Real-world Human-Computer-Interaction , 2015, ICPRAM.

[5]  Detection of Emotional Events utilizing Support Vector Methods in an Active Learning HCI Scenario , 2014, ERM4HCI '14.

[6]  Ville Ojansivu,et al.  Blur Insensitive Texture Classification Using Local Phase Quantization , 2008, ICISP.

[7]  P. Gomez,et al.  Affective and physiological responses to environmental noises and music. , 2004, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[8]  Patrick Thiam,et al.  Adaptive confidence learning for the personalization of pain intensity estimation systems , 2017, Evol. Syst..

[9]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[10]  Markus Kächele,et al.  Support Vector Regression of Sparse Dictionary-Based Features for View-Independent Action Unit Intensity Estimation , 2017, 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017).

[11]  Tanu Sharma,et al.  A novel feature extraction for robust EMG pattern recognition , 2016, Journal of medical engineering & technology.

[12]  S. Sathiya Keerthi,et al.  Convergence of a Generalized SMO Algorithm for SVM Classifier Design , 2002, Machine Learning.

[13]  R. Treister,et al.  Differentiating between heat pain intensities: The combined effect of multiple autonomic parameters , 2012, PAIN®.

[14]  Nitesh V. Chawla,et al.  SMOTEBoost: Improving Prediction of the Minority Class in Boosting , 2003, PKDD.

[15]  Sascha Meudt,et al.  Machine Learning Driven Heart Rate Detection with Camera Photoplethysmography in Time Domain , 2016, ANNPR.

[16]  Alexander J. Smola,et al.  Support Vector Method for Function Approximation, Regression Estimation and Signal Processing , 1996, NIPS.

[17]  Tara N. Sainath,et al.  Learning filter banks within a deep neural network framework , 2013, 2013 IEEE Workshop on Automatic Speech Recognition and Understanding.

[18]  Gustavo Moreira da Silva,et al.  Automatic pain quantification using autonomic parameters , 2014 .

[19]  Thierry Dutoit,et al.  Causal-anticausal decomposition of speech using complex cepstrum for glottal source estimation , 2011, Speech Commun..

[20]  Jennifer Healey,et al.  Affective wearables , 1997, Digest of Papers. First International Symposium on Wearable Computers.

[21]  C. Vinola,et al.  A Survey on Human Emotion Recognition Approaches, Databases and Applications , 2015 .

[22]  Razvan Pascanu,et al.  Combining modality specific deep neural networks for emotion recognition in video , 2013, ICMI '13.

[23]  Honglak Lee,et al.  Unsupervised feature learning for audio classification using convolutional deep belief networks , 2009, NIPS.

[24]  M. Chraif,et al.  Correlative study between the personality factors and pain perception at young students at psychology , 2015 .

[25]  P. Alku,et al.  Normalized amplitude quotient for parametrization of the glottal flow. , 2002, The Journal of the Acoustical Society of America.

[26]  Navdeep Jaitly,et al.  Hybrid speech recognition with Deep Bidirectional LSTM , 2013, 2013 IEEE Workshop on Automatic Speech Recognition and Understanding.

[27]  Daniel Gatica-Perez,et al.  Latent semantic analysis of facial action codes for automatic facial expression recognition , 2004, MIR '04.

[28]  Günther Palm,et al.  Multiple classifier combination using reject options and markov fusion networks , 2012, ICMI '12.

[29]  Markus Kächele,et al.  Multiple Classifier Systems for the Classification of Audio-Visual Emotional States , 2011, ACII.

[30]  Patrick Thiam,et al.  Continuous Multimodal Human Affect Estimation using Echo State Networks , 2016, AVEC@ACM Multimedia.

[31]  Louis-Philippe Morency,et al.  Automatic Nonverbal Behavior Indicators of Depression and PTSD: Exploring Gender Differences , 2013, 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction.

[32]  Dongmei Jiang,et al.  Kalman Filter-Based Facial Emotional Expression Recognition , 2011, ACII.

[33]  Roddy Cowie,et al.  FEELTRACE: an instrument for recording perceived emotion in real time , 2000 .

[34]  Stefan Wermter,et al.  Face expression recognition with a 2-channel Convolutional Neural Network , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[35]  Paavo Alku,et al.  Comparison of multiple voice source parameters in different phonation types , 2007, INTERSPEECH.

[36]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[37]  Stephen Kwek,et al.  Applying Support Vector Machines to Imbalanced Datasets , 2004, ECML.

[38]  Markus Kächele,et al.  Speeding up k-means by approximating Euclidean distances via block vectors , 2016, ICML.

[39]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[40]  Günther Palm,et al.  On the discovery of events in EEG data utilizing information fusion , 2013, Comput. Stat..

[41]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[42]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[43]  Stefan J. Kiebel,et al.  Re-visiting the echo state property , 2012, Neural Networks.

[44]  P. Ekman,et al.  Pan-Cultural Elements in Facial Displays of Emotion , 1969, Science.

[45]  M. Lugger,et al.  Classification of different speaking groups ITG Fachtagung Sprachkommunikation 2006 CLASSIFICATION OF DIFFERENT SPEAKING GROUPS BY MEANS OF VOICE QUALITY PARAMETERS , 2011 .

[46]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[47]  Zhihong Zeng,et al.  A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[50]  Hynek Hermansky,et al.  RASTA-PLP speech analysis technique , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[51]  P. Costa,et al.  Revised NEO Personality Inventory (NEO-PI-R) and NEO-Five-Factor Inventory (NEO-FFI) , 1992 .

[52]  Patrick Thiam,et al.  Fusion Mappings for Multimodal Affect Recognition , 2015, 2015 IEEE Symposium Series on Computational Intelligence.

[53]  Hatice Gunes,et al.  Automatic Segmentation of Spontaneous Data using Dimensional Labels from Multiple Coders , 2010 .

[54]  Markus Kächele,et al.  Classification of Emotional States in a Woz Scenario Exploiting Labeled and Unlabeled Bio-physiological Data , 2011, PSL.

[55]  Markus Kächele,et al.  Semi-Supervised Dictionary Learning of Sparse Representations for Emotion Recognition , 2013, PSL.

[56]  Tamás D. Gedeon,et al.  Emotion Recognition In The Wild Challenge 2014: Baseline, Data and Protocol , 2014, ICMI.

[57]  Hui Han,et al.  Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning , 2005, ICIC.

[58]  B. Parkinson,et al.  Emotion and motivation , 1995 .

[59]  Javier Hernandez,et al.  Call Center Stress Recognition with Person-Specific Models , 2011, ACII.

[60]  Simon Lucey,et al.  Deformable Model Fitting by Regularized Landmark Mean-Shift , 2010, International Journal of Computer Vision.

[61]  Markus Kächele,et al.  SMO Lattices for the Parallel Training of Support Vector Machines , 2015, ESANN.

[62]  Thomas F. Quatieri,et al.  Vocal and Facial Biomarkers of Depression based on Motor Incoordination and Timing , 2014, AVEC '14.

[63]  Panagiotis K. Artemiadis,et al.  An EMG-Based Robot Control Scheme Robust to Time-Varying EMG Signal Features , 2010, IEEE Transactions on Information Technology in Biomedicine.

[64]  James C. Bezdek,et al.  Decision templates for multiple classifier fusion: an experimental comparison , 2001, Pattern Recognit..

[65]  Ayoub Al-Hamadi,et al.  The biovid heat pain database data for the advancement and systematic validation of an automated pain recognition system , 2013, 2013 IEEE International Conference on Cybernetics (CYBCO).

[66]  Patrick Thiam,et al.  Ensembles of Support Vector Data Description for Active Learning Based Annotation of Affective Corpora , 2015, 2015 IEEE Symposium Series on Computational Intelligence.

[67]  Fan Zhang,et al.  Automatic affective dimension recognition from naturalistic facial expressions based on wavelet filtering and PLS regression , 2015, 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).

[68]  Patrick Thiam,et al.  Majority-Class Aware Support Vector Domain Oversampling for Imbalanced Classification Problems , 2014, ANNPR.

[69]  Adam Kowalczyk,et al.  Extreme re-balancing for SVMs: a case study , 2004, SKDD.

[70]  Maja Pantic,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING , 2022 .

[71]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[72]  Qiang Ji,et al.  Facial Action Unit Recognition by Exploiting Their Dynamic and Semantic Relationships , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[73]  Bin Yang,et al.  The Relevance of Voice Quality Features in Speaker Independent Emotion Recognition , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[74]  Robert P. W. Duin,et al.  Support vector domain description , 1999, Pattern Recognit. Lett..

[75]  Herbert F. Jelinek,et al.  Principal component analysis of heart rate variability data in assessing cardiac autonomic neuropathy , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[76]  Tanaya Guha,et al.  Multimodal Prediction of Affective Dimensions and Depression in Human-Computer Interactions , 2014, AVEC '14.

[77]  Fabien Ringeval,et al.  Introducing the RECOLA multimodal corpus of remote collaborative and affective interactions , 2013, 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).

[78]  O. Vassend,et al.  Five-factor personality traits and pain sensitivity: A twin study , 2013, PAIN®.

[79]  Markus Kächele,et al.  Monte Carlo Based Importance Estimation of Localized Feature Descriptors for the Recognition of Facial Expressions , 2014, MPRSS.

[80]  Markus Kächele,et al.  Cascaded Fusion of Dynamic, Spatial, and Textural Feature Sets for Person-Independent Facial Emotion Recognition , 2014, 2014 22nd International Conference on Pattern Recognition.

[81]  M. Bradley,et al.  Measuring emotion: the Self-Assessment Manikin and the Semantic Differential. , 1994, Journal of behavior therapy and experimental psychiatry.

[82]  K. Fingerman,et al.  Age and gender differences in adults' descriptions of emotional reactions to interpersonal problems. , 2003, The journals of gerontology. Series B, Psychological sciences and social sciences.

[83]  Russel Pears,et al.  Synthetic Minority Over-sampling TEchnique (SMOTE) for Predicting Software Build Outcomes , 2014, SEKE.

[84]  Jeffrey M Girard,et al.  CARMA: Software for continuous affect rating and media annotation. , 2014, Journal of open research software.

[85]  M. Bradley,et al.  The International Affective Picture System (IAPS) in the study of emotion and attention. , 2007 .

[86]  J. Liljencrants,et al.  Dept. for Speech, Music and Hearing Quarterly Progress and Status Report a Four-parameter Model of Glottal Flow , 2022 .

[87]  Gwen Littlewort,et al.  A Prototype for Automatic Recognition of Spontaneous Facial Actions , 2002, NIPS.

[88]  Dennis C. Tkach,et al.  Study of stability of time-domain features for electromyographic pattern recognition , 2010, Journal of NeuroEngineering and Rehabilitation.

[89]  Shashidhar G. Koolagudi,et al.  Spectral Features for Emotion Classification , 2009, 2009 IEEE International Advance Computing Conference.

[90]  L. H. Anauer,et al.  Speech Analysis and Synthesis by Linear Prediction of the Speech Wave , 2000 .

[91]  A. Beck,et al.  Comparison of Beck Depression Inventories -IA and -II in psychiatric outpatients. , 1996, Journal of personality assessment.

[92]  Lori Lamel,et al.  Challenges in real-life emotion annotation and machine learning based detection , 2005, Neural Networks.

[93]  John Kane,et al.  Wavelet Maxima Dispersion for Breathy to Tense Voice Discrimination , 2013, IEEE Transactions on Audio, Speech, and Language Processing.

[94]  Markus Kächele,et al.  Using unlabeled data to improve classification of emotional states in human computer interaction , 2013, Journal on Multimodal User Interfaces.

[95]  Davide Fossati,et al.  Affect detection from non-stationary physiological data using ensemble classifiers , 2014, Evolving Systems.

[96]  Mohamed Chetouani,et al.  Robust continuous prediction of human emotions using multiscale dynamic cues , 2012, ICMI '12.

[97]  Björn W. Schuller,et al.  AVEC 2014: 3D Dimensional Affect and Depression Recognition Challenge , 2014, AVEC '14.

[98]  Maja Pantic,et al.  Biologically vs. Logic Inspired Encoding of Facial Actions and Emotions in Video , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[99]  Sascha Meudt,et al.  Fusion of Audio-visual Features using Hierarchical Classifier Systems for the Recognition of Affective States and the State of Depression , 2014, ICPRAM.

[100]  David DeVault,et al.  The Distress Analysis Interview Corpus of human and computer interviews , 2014, LREC.

[101]  R. Kotov,et al.  Personality and depression: explanatory models and review of the evidence. , 2011, Annual review of clinical psychology.

[102]  M. Benedek,et al.  Decomposition of skin conductance data by means of nonnegative deconvolution , 2010, Psychophysiology.

[103]  Liqing Zhang,et al.  ECG Feature Extraction and Classification Using Wavelet Transform and Support Vector Machines , 2005, 2005 International Conference on Neural Networks and Brain.

[104]  Björn W. Schuller,et al.  AVEC 2013: the continuous audio/visual emotion and depression recognition challenge , 2013, AVEC@ACM Multimedia.

[105]  Sascha Meudt,et al.  Revisiting the EmotiW challenge: how wild is it really? , 2015, Journal on Multimodal User Interfaces.

[106]  Zheru Chi,et al.  Emotion Recognition in the Wild with Feature Fusion and Multiple Kernel Learning , 2014, ICMI.

[107]  Sascha Meudt,et al.  Prosodic, Spectral and Voice Quality Feature Selection Using a Long-Term Stopping Criterion for Audio-Based Emotion Recognition , 2014, 2014 22nd International Conference on Pattern Recognition.

[108]  Markus Kächele,et al.  Inferring Depression and Affect from Application Dependent Meta Knowledge , 2014, AVEC '14.

[109]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[110]  Angeliki Metallinou,et al.  Annotation and processing of continuous emotional attributes: Challenges and opportunities , 2013, 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).

[111]  Federico Girosi,et al.  An improved training algorithm for support vector machines , 1997, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop.

[112]  Shiguang Shan,et al.  AU-aware Deep Networks for facial expression recognition , 2013, 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).

[113]  Igor Durdanovic,et al.  Parallel Support Vector Machines: The Cascade SVM , 2004, NIPS.

[114]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[115]  Ayoub Al-Hamadi,et al.  Automatic Pain Recognition from Video and Biomedical Signals , 2014, 2014 22nd International Conference on Pattern Recognition.

[116]  Ya Li,et al.  Multi-scale Temporal Modeling for Dimensional Emotion Recognition in Video , 2014, AVEC '14.

[117]  S M Pincus,et al.  Approximate entropy as a measure of system complexity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[118]  Weiting Chen,et al.  Measuring complexity using FuzzyEn, ApEn, and SampEn. , 2009, Medical engineering & physics.

[119]  Qiang Chen,et al.  A Health-IoT Platform Based on the Integration of Intelligent Packaging, Unobtrusive Bio-Sensor, and Intelligent Medicine Box , 2014, IEEE Transactions on Industrial Informatics.

[120]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[121]  K. Scherer What are emotions? And how can they be measured? , 2005 .

[122]  Ailbhe Ní Chasaide,et al.  The role of voice quality in communicating emotion, mood and attitude , 2003, Speech Commun..

[123]  M. Bradley,et al.  Looking at pictures: affective, facial, visceral, and behavioral reactions. , 1993, Psychophysiology.

[124]  Takeo Kanade,et al.  The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[125]  Jeffrey F. Cohn,et al.  Automatic detection of pain intensity , 2012, ICMI '12.

[126]  Vwani P. Roychowdhury,et al.  Distributed Parallel Support Vector Machines in Strongly Connected Networks , 2008, IEEE Transactions on Neural Networks.

[127]  Markus Kächele,et al.  Using Radial Basis Function Neural Networks for Continuous and Discrete Pain Estimation from Bio-physiological Signals , 2016, ANNPR.

[128]  Dongmei Jiang,et al.  Multimodal Affective Dimension Prediction Using Deep Bidirectional Long Short-Term Memory Recurrent Neural Networks , 2015, AVEC@ACM Multimedia.

[129]  Hatice Gunes,et al.  Continuous Prediction of Spontaneous Affect from Multiple Cues and Modalities in Valence-Arousal Space , 2011, IEEE Transactions on Affective Computing.

[130]  Patrick Thiam,et al.  Methods for Person-Centered Continuous Pain Intensity Assessment From Bio-Physiological Channels , 2016, IEEE Journal of Selected Topics in Signal Processing.

[131]  Robert P. W. Duin,et al.  Uniform Object Generation for Optimizing One-class Classifiers , 2002, J. Mach. Learn. Res..

[132]  Inma Hernáez,et al.  Feature Analysis and Evaluation for Automatic Emotion Identification in Speech , 2010, IEEE Transactions on Multimedia.

[133]  Jennifer Healey,et al.  Digital processing of affective signals , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[134]  Markus Kächele,et al.  On the effects of continuous annotation tools and the human factor on the annotation outcome , 2015, ISCT.

[135]  Takeo Kanade,et al.  Comprehensive database for facial expression analysis , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[136]  Enrique Argones-Rúa,et al.  Audiovisual three-level fusion for continuous estimation of Russell's emotion circumplex , 2013, AVEC@ACM Multimedia.

[137]  Robert E. Schapire,et al.  A Brief Introduction to Boosting , 1999, IJCAI.

[138]  Herbert Jaeger,et al.  Optimization and applications of echo state networks with leaky- integrator neurons , 2007, Neural Networks.

[139]  Fabien Ringeval,et al.  AV+EC 2015: The First Affect Recognition Challenge Bridging Across Audio, Video, and Physiological Data , 2015, AVEC@ACM Multimedia.

[140]  Markus Kächele,et al.  Data fusion for automated pain recognition , 2015, 2015 9th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth).

[141]  John Kane,et al.  Identifying Regions of Non-Modal Phonation Using Features of the Wavelet Transform , 2011, INTERSPEECH.

[142]  Fabien Ringeval,et al.  AVEC 2016: Depression, Mood, and Emotion Recognition Workshop and Challenge , 2016, AVEC@ACM Multimedia.

[143]  Björn W. Schuller,et al.  AVEC 2012: the continuous audio/visual emotion challenge , 2012, ICMI '12.

[144]  Shiguang Shan,et al.  Combining Multiple Kernel Methods on Riemannian Manifold for Emotion Recognition in the Wild , 2014, ICMI.

[145]  George Trigeorgis,et al.  Adieu features? End-to-end speech emotion recognition using a deep convolutional recurrent network , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[146]  Friedhelm Schwenker,et al.  Investigating fuzzy-input fuzzy-output support vector machines for robust voice quality classification , 2013, Comput. Speech Lang..

[147]  Andrew Zisserman,et al.  Representing shape with a spatial pyramid kernel , 2007, CIVR '07.

[148]  Maja Pantic,et al.  Action unit detection using sparse appearance descriptors in space-time video volumes , 2011, Face and Gesture 2011.

[149]  Friedhelm Schwenker,et al.  Kalman Filter Based Classifier Fusion for Affective State Recognition , 2013, MCS.

[150]  P. Costa,et al.  A contemplated revision of the NEO Five-Factor Inventory , 2004 .

[151]  J. Russell,et al.  Evidence for a three-factor theory of emotions , 1977 .

[152]  Jeffrey F. Cohn,et al.  Painful data: The UNBC-McMaster shoulder pain expression archive database , 2011, Face and Gesture 2011.

[153]  Patrick Thiam,et al.  Ensemble Methods for Continuous Affect Recognition: Multi-modality, Temporality, and Challenges , 2015, AVEC@ACM Multimedia.

[154]  Sascha Meudt,et al.  A New Multi-class Fuzzy Support Vector Machine Algorithm , 2014, ANNPR.

[155]  Albino Nogueiras,et al.  Speech emotion recognition using hidden Markov models , 2001, INTERSPEECH.

[156]  Maja Pantic,et al.  Continuous Pain Intensity Estimation from Facial Expressions , 2012, ISVC.

[157]  Xinjie Yu,et al.  Introduction to evolutionary algorithms , 2010, The 40th International Conference on Computers & Indutrial Engineering.

[158]  G. Palm,et al.  Learning of Decision Fusion Mappings for Pattern Recognition , 2006 .

[159]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[160]  Ya Li,et al.  Long Short Term Memory Recurrent Neural Network based Multimodal Dimensional Emotion Recognition , 2015, AVEC@ACM Multimedia.

[161]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[162]  Sascha Meudt,et al.  Audio-Visual User Identification in HCI Scenarios , 2014, MPRSS.

[163]  Tamás D. Gedeon,et al.  Emotion recognition in the wild challenge (EmotiW) challenge and workshop summary , 2013, ICMI '13.

[164]  Elisabeth André,et al.  Emotion recognition based on physiological changes in music listening , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[165]  Ryohei Nakatsu,et al.  Emotion Recognition in Speech Using Neural Networks , 2000, Neural Computing & Applications.

[166]  Björn W. Schuller,et al.  OpenEAR — Introducing the munich open-source emotion and affect recognition toolkit , 2009, 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops.

[167]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[168]  Carlos Busso,et al.  Correcting Time-Continuous Emotional Labels by Modeling the Reaction Lag of Evaluators , 2015, IEEE Transactions on Affective Computing.

[169]  Tamás D. Gedeon,et al.  Collecting Large, Richly Annotated Facial-Expression Databases from Movies , 2012, IEEE MultiMedia.

[170]  D. W. Robinson,et al.  A re-determination of the equal-loudness relations for pure tones , 1956 .

[171]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[172]  Michel F. Valstar,et al.  Local Gabor Binary Patterns from Three Orthogonal Planes for Automatic Facial Expression Recognition , 2013, 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction.

[173]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[174]  Roddy Cowie,et al.  Tracing Emotion: An Overview , 2012, Int. J. Synth. Emot..

[175]  Taghi M. Khoshgoftaar,et al.  Experimental perspectives on learning from imbalanced data , 2007, ICML '07.

[176]  Björn W. Schuller,et al.  LSTM-Modeling of continuous emotions in an audiovisual affect recognition framework , 2013, Image Vis. Comput..

[177]  L. Lin,et al.  A concordance correlation coefficient to evaluate reproducibility. , 1989, Biometrics.

[178]  M. Picheny,et al.  Comparison of Parametric Representation for Monosyllabic Word Recognition in Continuously Spoken Sentences , 2017 .

[179]  Astrid Paeschke,et al.  A database of German emotional speech , 2005, INTERSPEECH.

[180]  Gwen Littlewort,et al.  Faces of pain: automated measurement of spontaneousallfacial expressions of genuine and posed pain , 2007, ICMI '07.

[181]  Heng Wang,et al.  Depression recognition based on dynamic facial and vocal expression features using partial least square regression , 2013, AVEC@ACM Multimedia.

[182]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[183]  Vladimir Pavlovic,et al.  Dynamic Probabilistic CCA for Analysis of Affective Behavior and Fusion of Continuous Annotations , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[184]  Björn Schuller,et al.  Opensmile: the munich versatile and fast open-source audio feature extractor , 2010, ACM Multimedia.

[185]  Tsuhan Chen,et al.  The painful face - Pain expression recognition using active appearance models , 2009, Image Vis. Comput..

[186]  Jean-Philippe Thiran,et al.  Prediction of asynchronous dimensional emotion ratings from audiovisual and physiological data , 2015, Pattern Recognit. Lett..

[187]  Markus Kächele,et al.  Emotion Recognition in Speech with Deep Learning Architectures , 2016, ANNPR.

[188]  Josephine Sullivan,et al.  One millisecond face alignment with an ensemble of regression trees , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[189]  Günther Palm,et al.  Sparse activity and sparse connectivity in supervised learning , 2016, J. Mach. Learn. Res..

[190]  Say Wei Foo,et al.  Classification of stress in speech using linear and nonlinear features , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[191]  Semyon Slobounov,et al.  Application of a novel measure of EEG non-stationarity as ‘Shannon- entropy of the peak frequency shifting’ for detecting residual abnormalities in concussed individuals , 2011, Clinical Neurophysiology.

[192]  Patrick Thiam,et al.  On Annotation and Evaluation of Multi-modal Corpora in Affective Human-Computer Interaction , 2014, MA3HMI@INTERSPEECH.