Enhancing QUasi-Affine TRansformation Evolution (QUATRE) with adaptation scheme on numerical optimization

Abstract Optimization problems exists extensively in real life, especially in science and engineering. Over the past decades, various optimization techniques have been developed to solve complex optimization problems in different areas especially that are unable to be solved by traditional methods. QUasi-Affine TRansformation Evolutionary (QUATRE) algorithm is a new novel evolution structure for global optimization, which is a swarm based algorithm and use quasi-affine transformation approach for evolution. Nevertheless, there are still some weaknesses in these QUATRE variants. This paper presents a novel E-QUATRE algorithm in which an automatically generated evolution matrix with self-adaptive mechanism and an adaptive control parameter F are proposed for the enhancement of the QUATRE algorithm. Moreover, this paper also discusses the relationship between QUATRE algorithm, Particle Swarm Optimization (PSO) and Differential Evolution (DE) algorithm, all of which are also famous swarm based Stochastic Algorithms (SAs). Algorithm validation is conducted under CEC2013 test suite on single-objective numerical optimization, and E-QUATRE algorithm is compared with several famous Particle Swarm Optimization (PSO) variants, Differential Evolution (DE) variants and QUATRE variants. The experiment results indicate that the proposed E-QUATRE algorithm has a better performance than these swarm based algorithms with fixed population.

[1]  Pei Hu,et al.  Improved Binary Grey Wolf Optimizer and Its application for feature selection , 2020, Knowl. Based Syst..

[2]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[3]  Jeng-Shyang Pan,et al.  The QUasi-Affine TRansformation Evolution (QUATRE) Algorithm: An Overview , 2017, ECC.

[4]  Jeng-Shyang Pan,et al.  QUasi-Affine TRansformation Evolution with External ARchive (QUATRE-EAR): An enhanced structure for Differential Evolution , 2018, Knowl. Based Syst..

[5]  Daniela Zaharie,et al.  Influence of crossover on the behavior of Differential Evolution Algorithms , 2009, Appl. Soft Comput..

[6]  Jeng-Shyang Pan,et al.  Parameters with Adaptive Learning Mechanism (PALM) for the enhancement of Differential Evolution , 2018, Knowl. Based Syst..

[7]  Jeng-Shyang Pan,et al.  QUasi-affine TRansformation Evolutionary (QUATRE) algorithm: A parameter-reduced differential evolution algorithm for optimization problems , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[8]  Alex S. Fukunaga,et al.  Success-history based parameter adaptation for Differential Evolution , 2013, 2013 IEEE Congress on Evolutionary Computation.

[9]  Jeng-Shyang Pan,et al.  The QUATRE structure: An efficient approach to tackling the structure bias in Differential Evolution , 2019, 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC).

[10]  Jeng-Shyang Pan,et al.  PaDE: An enhanced Differential Evolution algorithm with novel control parameter adaptation schemes for numerical optimization , 2019, Knowl. Based Syst..

[11]  Liang Gao,et al.  Adaptive Differential Evolution With Sorting Crossover Rate for Continuous Optimization Problems , 2017, IEEE Transactions on Cybernetics.

[12]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[13]  Jeng-Shyang Pan,et al.  A new meta-heuristic ebb-tide-fish-inspired algorithm for traffic navigation , 2015, Telecommunication Systems.

[14]  P. N. Suganthan,et al.  A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization , 2012, Inf. Sci..

[15]  Jeng-Shyang Pan,et al.  Differential evolution utilizing a handful top superior individuals with bionic bi-population structure for the enhancement of optimization performance , 2018, Enterp. Inf. Syst..

[16]  A. Kai Qin,et al.  Self-adaptive differential evolution algorithm for numerical optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[17]  Xiaoqing Li,et al.  Di-DE: Depth Information-Based Differential Evolution With Adaptive Parameter Control for Numerical Optimization , 2020, IEEE Access.

[18]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[19]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[20]  Hossam Faris,et al.  An evolutionary gravitational search-based feature selection , 2019, Inf. Sci..

[21]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[22]  Shu-Chuan Chu,et al.  A novel Differential Evolution approach to scheduling the freight trains in intervals of passenger trains , 2019, 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC).

[23]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[24]  K. Steiglitz,et al.  Adaptive step size random search , 1968 .

[25]  Jeng-Shyang Pan,et al.  QUasi-Affine TRansformation Evolutionary (QUATRE) algorithm: A cooperative swarm based algorithm for global optimization , 2016, Knowl. Based Syst..

[26]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[27]  Shu-Chuan Chu,et al.  Monkey King Evolution: an enhanced ebb-tide-fish algorithm for global optimization and its application in vehicle navigation under wireless sensor network environment , 2016, Telecommunication Systems.

[28]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[29]  Xingsi Xue,et al.  Optimizing Ontology Alignment in Vector Space , 2020 .

[30]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[31]  Xiujuan Lei,et al.  Identification of dynamic protein complexes based on fruit fly optimization algorithm , 2016, Knowl. Based Syst..

[32]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[33]  Yaochu Jin,et al.  A social learning particle swarm optimization algorithm for scalable optimization , 2015, Inf. Sci..

[34]  Jeng-Shyang Pan,et al.  QUATRE Algorithm with Sort Strategy for Global Optimization in Comparison with DE and PSO Variants , 2017, ECC.

[35]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[36]  Jeng-Shyang Pan,et al.  Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization , 2016, Knowl. Based Syst..

[37]  Kay Chen Tan,et al.  Multiple Exponential Recombination for Differential Evolution , 2017, IEEE Transactions on Cybernetics.

[38]  Xiujuan Lei,et al.  Moth-flame optimization-based algorithm with synthetic dynamic PPI networks for discovering protein complexes , 2019, Knowl. Based Syst..

[39]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[40]  Jeng-Shyang Pan,et al.  A Competitive QUasi-Affine TRansformation Evolutionary (C-QUATRE) Algorithm for global optimization , 2016, 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[41]  Janez Brest,et al.  Some Improvements of the Self-Adaptive jDE Algorithm , 2014, 2014 IEEE Symposium on Differential Evolution (SDE).

[42]  Charles K. Chui,et al.  Affine frames, quasi-affine frames, and their duals , 1998, Adv. Comput. Math..

[43]  Hossam Faris,et al.  An intelligent system for spam detection and identification of the most relevant features based on evolutionary Random Weight Networks , 2019, Inf. Fusion.

[44]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[45]  Xiaoqing Li,et al.  Enhancing Differential Evolution With Novel Parameter Control , 2020, IEEE Access.

[46]  Jeng-Shyang Pan,et al.  HARD-DE: Hierarchical ARchive Based Mutation Strategy With Depth Information of Evolution for the Enhancement of Differential Evolution on Numerical Optimization , 2019, IEEE Access.

[47]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[48]  Jeng-Shyang Pan,et al.  Novel Systolization of Subquadratic Space Complexity Multipliers Based on Toeplitz Matrix–Vector Product Approach , 2019, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.