A New Family of Efficient Conforming Mixed Finite Elements on Both Rectangular and Cuboid Meshes for Linear Elasticity in the Symmetric Formulation
暂无分享,去创建一个
[1] R. Stenberg. On the construction of optimal mixed finite element methods for the linear elasticity problem , 1986 .
[2] M. E. Morley. A family of mixed finite elements for linear elasticity , 1989 .
[3] Claes Johnson,et al. Some equilibrium finite element methods for two-dimensional elasticity problems , 1978 .
[4] Jun Hu,et al. Lower Order Rectangular Nonconforming Mixed Finite Elements for Plane Elasticity , 2007, SIAM J. Numer. Anal..
[5] Hongying Man,et al. The simplest mixed finite element method for linear elasticity in the symmetric formulation on $n$-rectangular grids , 2013, 1304.5428.
[6] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[7] D. Arnold,et al. NONCONFORMING MIXED ELEMENTS FOR ELASTICITY , 2003 .
[8] Patrick Joly,et al. A New Family of Mixed Finite Elements for the Linear Elastodynamic Problem , 2001, SIAM J. Numer. Anal..
[9] Son-Young Yi. A NEW NONCONFORMING MIXED FINITE ELEMENT METHOD FOR LINEAR ELASTICITY , 2006 .
[10] Douglas N. Arnold,et al. Mixed finite elements for elasticity , 2002, Numerische Mathematik.
[11] J. Douglas,et al. PEERS: A new mixed finite element for plane elasticity , 1984 .
[12] Shaochun Chen,et al. Conforming Rectangular Mixed Finite Elements for Elasticity , 2011, J. Sci. Comput..
[13] Jan Reininghaus,et al. The Arnold–Winther mixed FEM in linear elasticity. Part I: Implementation and numerical verification☆ , 2008 .
[14] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[15] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[16] C. P. Gupta,et al. A family of higher order mixed finite element methods for plane elasticity , 1984 .
[17] Douglas N. Arnold,et al. The Serendipity Family of Finite Elements , 2011, Found. Comput. Math..
[18] W. Marsden. I and J , 2012 .
[19] Douglas N. Arnold,et al. Finite elements for symmetric tensors in three dimensions , 2008, Math. Comput..
[20] Jay Gopalakrishnan,et al. A Second Elasticity Element Using the Matrix Bubble , 2012 .
[21] Jun-Jue Hu,et al. LOWER ORDER RECTANGULAR NONCONFORMING MIXED FINITE ELEMENT FOR THE THREE-DIMENSIONAL ELASTICITY PROBLEM , 2009 .
[22] R. Stenberg. A family of mixed finite elements for the elasticity problem , 1988 .
[23] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[24] Jay Gopalakrishnan,et al. Symmetric Nonconforming Mixed Finite Elements for Linear Elasticity , 2011, SIAM J. Numer. Anal..
[25] Bernardo Cockburn,et al. A Mixed Finite Element Method for Elasticity in Three Dimensions , 2005, J. Sci. Comput..
[26] J. Thomas,et al. Equilibrium finite elements for the linear elastic problem , 1979 .
[27] Shangyou Zhang,et al. A Simple Conforming Mixed Finite Element for Linear Elasticity on Rectangular Grids in Any Space Dimension , 2013, Journal of Scientific Computing.
[28] M. Fortin,et al. E cient rectangular mixed fi-nite elements in two and three space variables , 1987 .
[29] Rolf Stenberg,et al. A technique for analysing finite element methods for viscous incompressible flow , 1990 .
[30] D. Arnold,et al. RECTANGULAR MIXED FINITE ELEMENTS FOR ELASTICITY , 2005 .
[31] Douglas N. Arnold,et al. Mixed finite element methods for linear elasticity with weakly imposed symmetry , 2007, Math. Comput..
[32] C. Carstensen,et al. Computational competition of symmetric mixed FEM in linear elasticity , 2011 .
[33] M. Fortin,et al. Reduced symmetry elements in linear elasticity , 2008 .
[34] Jason S. Howell,et al. Inf–sup conditions for twofold saddle point problems , 2011, Numerische Mathematik.
[35] Gerard Awanou. Two Remarks on Rectangular Mixed Finite Elements for Elasticity , 2012, J. Sci. Comput..
[36] Bernardo Cockburn,et al. A new elasticity element made for enforcing weak stress symmetry , 2010, Math. Comput..
[37] D. Arnold,et al. Mixed Finite Elements for Elasticity in the Stress-Displacement Formulation , 2002 .
[38] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[39] Johnny Guzmán. A Unified Analysis of Several Mixed Methods for Elasticity with Weak Stress Symmetry , 2010, J. Sci. Comput..