A New Family of Efficient Conforming Mixed Finite Elements on Both Rectangular and Cuboid Meshes for Linear Elasticity in the Symmetric Formulation

A new family of mixed finite elements is proposed for solving the classical Hellinger--Reissner mixed problem of the elasticity equations. For two dimensions, the normal stress of the matrix-valued stress field is approximated by an enriched Brezzi--Douglas--Fortin--Marini element of order $k$, the shear stress by the serendipity element of order $k$, and the displacement field by an enriched discontinuous vector-valued $P_{k-1}$ element. The degrees of freedom on each element of the lowest order element, which is of first order, are 10 plus 4. For three dimensions, the normal stress is approximated by an enriched Raviart--Thomas element of order $k$, each component of the shear stress by a product space of the serendipity element space of two variables and the space of polynomials of degree $\leq k-1$ with respect to the rest variable, and the displacement field by an enriched discontinuous vector-valued $Q_{k-1}$ element. The degrees of freedom on each element of the lowest order element, which is of fi...

[1]  R. Stenberg On the construction of optimal mixed finite element methods for the linear elasticity problem , 1986 .

[2]  M. E. Morley A family of mixed finite elements for linear elasticity , 1989 .

[3]  Claes Johnson,et al.  Some equilibrium finite element methods for two-dimensional elasticity problems , 1978 .

[4]  Jun Hu,et al.  Lower Order Rectangular Nonconforming Mixed Finite Elements for Plane Elasticity , 2007, SIAM J. Numer. Anal..

[5]  Hongying Man,et al.  The simplest mixed finite element method for linear elasticity in the symmetric formulation on $n$-rectangular grids , 2013, 1304.5428.

[6]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[7]  D. Arnold,et al.  NONCONFORMING MIXED ELEMENTS FOR ELASTICITY , 2003 .

[8]  Patrick Joly,et al.  A New Family of Mixed Finite Elements for the Linear Elastodynamic Problem , 2001, SIAM J. Numer. Anal..

[9]  Son-Young Yi A NEW NONCONFORMING MIXED FINITE ELEMENT METHOD FOR LINEAR ELASTICITY , 2006 .

[10]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[11]  J. Douglas,et al.  PEERS: A new mixed finite element for plane elasticity , 1984 .

[12]  Shaochun Chen,et al.  Conforming Rectangular Mixed Finite Elements for Elasticity , 2011, J. Sci. Comput..

[13]  Jan Reininghaus,et al.  The Arnold–Winther mixed FEM in linear elasticity. Part I: Implementation and numerical verification☆ , 2008 .

[14]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[15]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[16]  C. P. Gupta,et al.  A family of higher order mixed finite element methods for plane elasticity , 1984 .

[17]  Douglas N. Arnold,et al.  The Serendipity Family of Finite Elements , 2011, Found. Comput. Math..

[18]  W. Marsden I and J , 2012 .

[19]  Douglas N. Arnold,et al.  Finite elements for symmetric tensors in three dimensions , 2008, Math. Comput..

[20]  Jay Gopalakrishnan,et al.  A Second Elasticity Element Using the Matrix Bubble , 2012 .

[21]  Jun-Jue Hu,et al.  LOWER ORDER RECTANGULAR NONCONFORMING MIXED FINITE ELEMENT FOR THE THREE-DIMENSIONAL ELASTICITY PROBLEM , 2009 .

[22]  R. Stenberg A family of mixed finite elements for the elasticity problem , 1988 .

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Jay Gopalakrishnan,et al.  Symmetric Nonconforming Mixed Finite Elements for Linear Elasticity , 2011, SIAM J. Numer. Anal..

[25]  Bernardo Cockburn,et al.  A Mixed Finite Element Method for Elasticity in Three Dimensions , 2005, J. Sci. Comput..

[26]  J. Thomas,et al.  Equilibrium finite elements for the linear elastic problem , 1979 .

[27]  Shangyou Zhang,et al.  A Simple Conforming Mixed Finite Element for Linear Elasticity on Rectangular Grids in Any Space Dimension , 2013, Journal of Scientific Computing.

[28]  M. Fortin,et al.  E cient rectangular mixed fi-nite elements in two and three space variables , 1987 .

[29]  Rolf Stenberg,et al.  A technique for analysing finite element methods for viscous incompressible flow , 1990 .

[30]  D. Arnold,et al.  RECTANGULAR MIXED FINITE ELEMENTS FOR ELASTICITY , 2005 .

[31]  Douglas N. Arnold,et al.  Mixed finite element methods for linear elasticity with weakly imposed symmetry , 2007, Math. Comput..

[32]  C. Carstensen,et al.  Computational competition of symmetric mixed FEM in linear elasticity , 2011 .

[33]  M. Fortin,et al.  Reduced symmetry elements in linear elasticity , 2008 .

[34]  Jason S. Howell,et al.  Inf–sup conditions for twofold saddle point problems , 2011, Numerische Mathematik.

[35]  Gerard Awanou Two Remarks on Rectangular Mixed Finite Elements for Elasticity , 2012, J. Sci. Comput..

[36]  Bernardo Cockburn,et al.  A new elasticity element made for enforcing weak stress symmetry , 2010, Math. Comput..

[37]  D. Arnold,et al.  Mixed Finite Elements for Elasticity in the Stress-Displacement Formulation , 2002 .

[38]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[39]  Johnny Guzmán A Unified Analysis of Several Mixed Methods for Elasticity with Weak Stress Symmetry , 2010, J. Sci. Comput..