Monte carlo design studies for the cherenkov telescope array

The Cherenkov Telescopes Array (CTA) is planned as the future instrument for very-high-energy (VHE) gamma-ray astronomy with a wide energy range of four orders of magnitude and an improvement in sensitivity compared to current instruments of about an order of magnitude. Monte Carlo simulations are a crucial tool in the design of CTA. The ultimate goal of these simulations is to find the most cost-effective solution for given physics goals and thus sensitivity goals or to find, for a given cost, the solution best suited for different types of targets with CTA. Apart from uncertain component cost estimates, the main problem in this procedure is the dependence on a huge number of configuration parameters, both in specifications of individual telescope types and in the array layout. This is addressed by simulation of a huge array intended as a superset of many different realistic array layouts, and also by simulation of array subsets for different telescope parameters. Different analysis methods - in use with current installations and extended (or developed specifically) for CTA - are applied to the simulated data sets for deriving the expected sensitivity of CTA. In this paper we describe the current status of this iterative approach to optimize the CTA design and layout.

[1]  Oliver Kirstein,et al.  First results on the performance of the HEGRA IACT array , 1997 .

[2]  H. Krawczynski,et al.  The optical system of the H.E.S.S. imaging atmospheric Cherenkov telescopes. Part II: mirror alignment and point spread function , 2003 .

[3]  S. Ostapchenko Nonlinear screening effects in high energy hadronic interactions , 2005, hep-ph/0505259.

[4]  Alan D. Martin,et al.  Review of Particle Physics: Particle data group , 2012 .

[5]  G. Maier,et al.  The Advanced Gamma‐ray Imaging System (AGIS)—Simulation Studies , 2008 .

[6]  V. V. Vassiliev,et al.  Wide field aplanatic two-mirror telescopes for ground-based γ-ray astronomy , 2007 .

[7]  A. Ferrari,et al.  The physics models of FLUKA: status and recent development , 2003, hep-ph/0306267.

[8]  T. Yamagami,et al.  Measurements of 0.2–20 GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer , 2006, astro-ph/0611388.

[9]  F. T. Collaboration,et al.  MARS, the MAGIC Analysis and Reconstruction Software , 2009, 0907.0943.

[10]  V. Stamatescu,et al.  TenTen: a new IACT array for multi-TeV γ-ray astronomy , 2008 .

[11]  Extending the sensitivity of air Čerenkov telescopes , 2006, astro-ph/0602284.

[12]  P. Giommi,et al.  Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV , 2010 .

[13]  A. V. Karelin,et al.  Cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV. , 2011, Physical review letters.

[14]  Vincent Marandon,et al.  A new analysis strategy for detection of faint γ-ray sources with Imaging Atmospheric Cherenkov Telescopes , 2011, 1104.5359.

[15]  N. Kalmykov,et al.  Quark-Gluon String Model and EAS Simulation Problems at Ultra-High Energies , 1997 .

[16]  S. Bass,et al.  Microscopic models for ultrarelativistic heavy ion collisions , 1998, nucl-th/9803035.

[17]  R. Parsons,et al.  Systematic uncertainties in air shower measurements from high-energy hadronic interaction models , 2011, 1102.4603.

[18]  V. P. Fomin,et al.  New methods of atmospheric Cherenkov imaging for gamma-ray astronomy. I. The false source method , 1994 .

[19]  Ti-Pei Li,et al.  Analysis methods for results in gamma-ray astronomy , 1983 .

[20]  K. Bernlohr,et al.  Simulation of Imaging Atmospheric Cherenkov Telescopes with CORSIKA and sim_telarray , 2008, 0808.2253.

[21]  V. Connaughton,et al.  A new analysis method for reconstructing the arrival direction of TeV gamma rays using a single imaging atmospheric Cherenkov telescope , 2000, astro-ph/0005468.

[22]  A. Chilingarian,et al.  Implementation of the Random Forest method for the Imaging Atmospheric Cherenkov Telescope MAGIC , 2007, 0709.3719.

[23]  H. Krawczynski,et al.  Comparison of techniques to reconstruct VHE gamma-ray showers from multiple stereoscopic Cherenkov images , 1999 .

[24]  S. Bass,et al.  RELATIVISTIC HADRON-HADRON COLLISIONS IN THE ULTRA-RELATIVISTIC QUANTUM MOLECULAR DYNAMICS MODEL , 1999, hep-ph/9909407.

[25]  G. Sembroski,et al.  Computer simulation methods for investigating the detection characteristics of TeV air Cherenkov telescopes , 1994 .

[26]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[27]  G. P. Rowell,et al.  Timing analysis techniques at large core distances for multi-TeV gamma ray astronomy , 2011, 1105.0282.

[28]  The Hegra Collaboration , 1996 .

[29]  Attila Krasznahorkay,et al.  TMVA - Toolkit for Multivariate Data Analysis with ROOT : Users guide , 2007 .

[30]  E. al.,et al.  Design studies for a European Gamma-ray Observatory , 2004, astro-ph/0403180.

[31]  H.S.Chen (陈和生),et al.  Computing in High Energy and Nuclear Physics , 2001 .

[32]  H. Krawczynski,et al.  The optical system of the H.E.S.S. imaging atmospheric Cherenkov telescopes. Part I: layout and components of the system , 2003, astro-ph/0308246.

[33]  M. Tluczykont,et al.  Selection and 3D-Reconstruction of Gamma-Ray-induced Air Showers with a Stereoscopic System of Atmospheric Cherenkov Telescopes , 2006, astro-ph/0601373.

[34]  P. Colin,et al.  Optimization of large homogeneous air Cherenkov arrays and application to the design of a 1–100 TeV γ-ray observatory , 2009, 0909.3792.

[35]  P. Biermann,et al.  A and a Manuskript-nr. Cosmic Rays Vii. Individual Element Spectra: Prediction and Data , 2007 .

[36]  S. Funk,et al.  The trigger system of the H.E.S.S. telescope array , 2004 .

[37]  F. Tegenfeldt,et al.  TMVA - Toolkit for multivariate data analysis , 2012 .

[38]  Werner Hofmann How to focus a Cherenkov telescope , 2001 .

[39]  V. Golev,et al.  Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy , 2011 .