Truthy: mapping the spread of astroturf in microblog streams

Online social media are complementing and in some cases replacing person-to-person social interaction and redefining the diffusion of information. In particular, microblogs have become crucial grounds on which public relations, marketing, and political battles are fought. We demonstrate a web service that tracks political memes in Twitter and helps detect astroturfing, smear campaigns, and other misinformation in the context of U.S. political elections. We also present some cases of abusive behaviors uncovered by our service. Our web service is based on an extensible framework that will enable the real-time analysis of meme diffusion in social media by mining, visualizing, mapping, classifying, and modeling massive streams of public microblogging events.

[1]  A. Rapoport Spread of information through a population with socio-structural bias: I. Assumption of transitivity , 1953 .

[2]  M. Lorr,et al.  Profile of mood states , 1971 .

[3]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[4]  R. Axelrod The Dissemination of Culture , 1997 .

[5]  Joshua M. Epstein,et al.  Growing Artificial Societies: Social Science from the Bottom Up , 1996 .

[6]  Philip S. Yu,et al.  Mining concept-drifting data streams using ensemble classifiers , 2003, KDD '03.

[7]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[8]  Lada A. Adamic,et al.  The political blogosphere and the 2004 U.S. election: divided they blog , 2005, LinkKDD '05.

[9]  Danah Boyd,et al.  Vizster: visualizing online social networks , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[10]  Yochai Benkler,et al.  The wealth of networks: how social production transforms markets and freedom , 2006 .

[11]  Christos Faloutsos,et al.  Sampling from large graphs , 2006, KDD '06.

[12]  Timothy W. Finin,et al.  Why we twitter: understanding microblogging usage and communities , 2007, WebKDD/SNA-KDD '07.

[13]  Jure Leskovec,et al.  The dynamics of viral marketing , 2005, EC '06.

[14]  Markus Jakobsson,et al.  Social phishing , 2007, CACM.

[15]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[16]  Johan Bollen,et al.  Between Conjecture and Memento: Shaping A Collective Emotional Perception of the Future , 2008, AAAI Spring Symposium: Emotion, Personality, and Social Behavior.

[17]  Don Tapscott,et al.  Grown Up Digital: How the Net Generation is Changing Your World , 2008 .

[18]  Fang Wu,et al.  Social Networks that Matter: Twitter Under the Microscope , 2008, First Monday.

[19]  S. Herring,et al.  Beyond Microblogging: Conversation and Collaboration via Twitter , 2009, 2009 42nd Hawaii International Conference on System Sciences.

[20]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[21]  Paul S. Drzaic Tweet! , 2009 .

[22]  Karen Rose,et al.  What is Twitter , 2009 .

[23]  Hanan Samet,et al.  TwitterStand: news in tweets , 2009, GIS.

[24]  Jure Leskovec,et al.  Meme-tracking and the dynamics of the news cycle , 2009, KDD.

[25]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[26]  A. Cattell Grown Up Digital – How the Net Generation Is Changing Your World , 2009 .

[27]  Bernard J. Jansen,et al.  Twitter power: Tweets as electronic word of mouth , 2009, J. Assoc. Inf. Sci. Technol..

[28]  Danah Boyd,et al.  Detecting Spam in a Twitter Network , 2009, First Monday.

[29]  Wolfgang Kellerer,et al.  Outtweeting the Twitterers - Predicting Information Cascades in Microblogs , 2010, WOSN.

[30]  Barbara Poblete,et al.  Twitter under crisis: can we trust what we RT? , 2010, SOMA '10.

[31]  Eni Mustafaraj,et al.  From Obscurity to Prominence in Minutes: Political Speech and Real-Time Search , 2010 .

[32]  Isabell M. Welpe,et al.  Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment , 2010, ICWSM.

[33]  Bernardo A. Huberman,et al.  Predicting the Future with Social Media , 2010, Web Intelligence.

[34]  Yutaka Matsuo,et al.  Earthquake shakes Twitter users: real-time event detection by social sensors , 2010, WWW '10.

[35]  Santo Fortunato,et al.  Traffic in Social Media II: Modeling Bursty Popularity , 2010, 2010 IEEE Second International Conference on Social Computing.

[36]  Vern Paxson,et al.  @spam: the underground on 140 characters or less , 2010, CCS '10.

[37]  Johan Bollen Determining the Public Mood State by Analysis of Microblogging Posts , 2010, ALIFE.

[38]  Scott W. Rasmussen,et al.  Mad As Hell: How the Tea Party Movement Is Fundamentally Remaking Our Two-Party System , 2010 .

[39]  Danah Boyd,et al.  Tweet, Tweet, Retweet: Conversational Aspects of Retweeting on Twitter , 2010, 2010 43rd Hawaii International Conference on System Sciences.

[40]  David A. Shamma,et al.  Characterizing debate performance via aggregated twitter sentiment , 2010, CHI.

[41]  Alex Hai Wang,et al.  Don't follow me: Spam detection in Twitter , 2010, 2010 International Conference on Security and Cryptography (SECRYPT).

[42]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[43]  Virgílio A. F. Almeida,et al.  Detecting Spammers on Twitter , 2010 .

[44]  Ed H. Chi,et al.  Want to be Retweeted? Large Scale Analytics on Factors Impacting Retweet in Twitter Network , 2010, 2010 IEEE Second International Conference on Social Computing.

[45]  Jacob Ratkiewicz,et al.  Detecting and Tracking the Spread of Astroturf Memes in Microblog Streams , 2010, ArXiv.

[46]  Efthimis N. Efthimiadis,et al.  Conversational tagging in twitter , 2010, HT '10.

[47]  Daniel M. Romero,et al.  Influence and passivity in social media , 2010, ECML/PKDD.

[48]  Johan Bollen,et al.  Twitter mood predicts the stock market , 2010, J. Comput. Sci..

[49]  Jure Leskovec,et al.  Inferring networks of diffusion and influence , 2010, KDD.

[50]  Rizal Setya Perdana What is Twitter , 2013 .

[51]  Jianfeng Guo,et al.  How Does Market Concern Derived from the Internet Affect Oil Prices? , 2013 .