Progress and Future Prospects for Particle-Based Simulation of Hypersonic Flow

Abstract The direct simulation Monte Carlo method (DSMC) has evolved over 50 years into a powerful numerical technique for the computation of thermochemical nonequilibrium gas flows. In this context, nonequilibrium means that velocity and internal energy distribution functions are not in equilibrium forms due to a low number of intermolecular collisions within a fluid element. In hypersonic flow, nonequilibrium conditions occur at high altitude and in regions of flow fields with small length scales. This article highlights significant developments in particle simulation methods (since 2001) applied specifically to hypersonic flows, which now includes Molecular Dynamics in addition to DSMC. Experimental measurements that have led directly to improved DSMC models will be highlighted. Algorithm development for DSMC aimed at increasing computational efficiency is discussed with a focus on hybrid particle-continuum methods. New research that applies all-atom Molecular Dynamics simulation and trajectory-based DSMC simulation to normal shock waves is summarized. Finally, a discussion of state-resolved DSMC modeling is included with reference to future prospects for particle simulation methods and in particular for the DSMC method.

[1]  I. Boyd,et al.  Monte Carlo simulation of nitrogen dissociation based on state-resolved cross sections , 2014 .

[2]  Graeme A. Bird,et al.  Molecular Gas Dynamics , 1976 .

[3]  Yoshio Sone,et al.  Molecular gas dynamics , 2007 .

[4]  Paolo Valentini,et al.  Large-scale molecular dynamics simulations of normal shock waves in dilute argon , 2009 .

[5]  Iain D. Boyd,et al.  Hybrid DSMC-CFD Simulations of Hypersonic Flow Over Sharp and Blunted Bodies , 2003 .

[6]  I. Boyd Modeling of associative ionization reactions in hypersonic rarefied flows , 2007 .

[7]  Katsuhisa Koura Monte Carlo direct (test-particle) simulation of rotational and vibrational relaxation and dissociation of diatomic molecules using classical trajectory calculations , 2002 .

[8]  Paolo Valentini,et al.  Molecular Dynamics Simulations of Shock Waves in Mixtures of Noble Gases , 2013 .

[9]  Extension of a hybrid particle-continuum method for a mixture of chemical species , 2012 .

[10]  G. D. Billing,et al.  VV and VT rate coefficients in H2 by a quantum-classical model , 1976 .

[11]  Paolo Valentini,et al.  A combined Event-Driven/Time-Driven molecular dynamics algorithm for the simulation of shock waves in rarefied gases , 2009, J. Comput. Phys..

[12]  David B. Goldstein,et al.  Hybrid Euler/Direct Simulation Monte Carlo Calculation of Unsteady Slit Flow , 2000 .

[13]  James N. Moss,et al.  Direct Simulation Monte Carlo Simulations of Hypersonic Flows With Shock Interactions , 2005 .

[14]  Kazuhisa Fujita,et al.  Assessment of Molecular Internal Relaxation and Dissociation by DSMC-QCT Analysis , 2007 .

[15]  I. Boyd,et al.  State-Resolved Vibrational Relaxation Modeling for Strongly Nonequilibrium Flows , 2011 .

[16]  Iain D. Boyd,et al.  Models for direct Monte Carlo simulation of coupled vibration-dissociation , 1993 .

[17]  Graham V. Candler,et al.  Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries , 1993 .

[18]  I. Boyd,et al.  Monte Carlo modeling of nitric oxide formation based on quasi-classical trajectory calculations , 1997 .

[19]  T. Schwartzentruber,et al.  Nonequilibrium-Direction-Dependent Rotational Energy Model for Use in Continuum and Stochastic Molecular Simulation , 2014 .

[20]  R. B. Bond,et al.  Assessment of Reaction-Rate Predictions of a Collision-Energy Approach for Chemical Reactions in Atmospheric Flows. , 2010 .

[21]  I. Boyd,et al.  Monte Carlo modeling of nitric oxide formation based on quasi-classical trajectory calculations , 1996 .

[22]  Thomas E. Schwartzentruber,et al.  A hybrid particle-continuum method applied to shock waves , 2006, J. Comput. Phys..

[23]  Jonathan M. Burt,et al.  A hybrid particle approach for continuum and rarefied flow simulation , 2009, J. Comput. Phys..

[24]  Iain D. Boyd,et al.  Vibrational–translational energy exchange models for the direct simulation Monte Carlo method , 1999 .

[25]  Roger C. Millikan,et al.  Systematics of Vibrational Relaxation , 1963 .

[26]  T. Schwartzentruber,et al.  Analysis of rovibrational relaxation in nitrogen via direct atomic simulation , 2014 .

[27]  Takashi Abe,et al.  Coupled Rotation-Vibration-Dissociation Kinetics of Nitrogen Using QCT Models , 2003 .

[28]  State Resolved Thermochemical Modeling of Nitrogen Using DSMC , 2012 .

[29]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[30]  J. R. Torczynski,et al.  Convergence behavior of a new DSMC algorithm , 2009, J. Comput. Phys..

[31]  W. L. Jones,et al.  Electrostatic-probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second , 1972 .

[32]  Iain D. Boyd,et al.  Modeling of Stardust Entry at High Altitude, Part 2: Radiation Analysis , 2010 .

[33]  J. G. Parker Rotational and Vibrational Relaxation in Diatomic Gases , 1959 .

[34]  Takashi Ozawa,et al.  Modeling of Stardust Reentry Ablation Flows in the Near-Continuum Flight Regime , 2008 .

[35]  Hassan Hassan,et al.  Rates of thermal relaxation in direct simulation Monte Carlo methods , 1994 .

[36]  Alejandro L. Garcia,et al.  Three-dimensional Hybrid Continuum-Atomistic Simulations for Multiscale Hydrodynamics , 2004 .

[37]  David B. Goldstein,et al.  Hybrid Euler/Particle Approach for Continuum/Rarefied Flows , 1998 .

[38]  Graham V. Candler,et al.  Measurements of ultraviolet radiation from a 5-km/s bow shock , 1994 .

[39]  David W. Schwenke,et al.  Theoretical analysis of N 2 collisional dissociation and rotation-vibration energy transfer , 2009 .

[40]  Jonathan M. Burt,et al.  Novel Cartesian Implementation of the Direct Simulation Monte Carlo Method , 2012 .

[41]  Maurice Rigby,et al.  Towards an intermolecular potential for nitrogen , 1984 .

[42]  T. Schwartzentruber,et al.  A nonequilibrium-direction-dependent rotational energy model for use in continuum and stochastic molecular simulation , 2013 .

[43]  Thomas E. Schwartzentruber,et al.  Modular Implementation of a Hybrid DSMC-NS Algorithm for Hypersonic Non-Equilibrium Flows , 2007 .

[44]  William L. Grantham,et al.  Flight results of a 25000-foot-per-second reentry experiment using microwave reflectometers to measure plasma electron density and standoff distance , 1970 .

[45]  I. Sohn,et al.  State specific vibrational relaxation and dissociation models for nitrogen in shock wave regions , 2012 .

[46]  Thomas E. Schwartzentruber,et al.  Hybrid Particle-Continuum Simulations of Nonequilibrium Hypersonic Blunt-Body Flowfields , 2006 .

[47]  David W. Schwenke,et al.  Vibrational and Rotational Excitation and Relaxation of Nitrogen from Accurate Theoretical Calculations , 2008 .

[48]  Iain D. Boyd,et al.  Extension of a Modular Particle-Continuum Method to Vibrationally Excited, Hypersonic Flows , 2011 .

[49]  James O. Arnold,et al.  NEQAIR96,Nonequilibrium and Equilibrium Radiative Transport and Spectra Program: User's Manual , 1996 .

[50]  Marco Panesi,et al.  Rovibrational internal energy transfer and dissociation of N2(1Σg+)-N(4S(u)) system in hypersonic flows. , 2013, The Journal of chemical physics.

[51]  Forrest E. Lumpkin,et al.  Virtual Sub-Cells for the Direct Simulation Monte Carlo Method , 2003 .

[52]  Thomas E. Schwartzentruber,et al.  A modular particle-continuum numerical method for hypersonic non-equilibrium gas flows , 2007, J. Comput. Phys..

[53]  Iain D. Boyd,et al.  Strategies for Efficient Particle Resolution in the Direct Simulation Monte Carlo Method , 2000 .

[54]  Graham V. Candler,et al.  Continuum and DSMC analysis of bow shock flight experiments , 1993 .

[55]  Timothy D. Holman,et al.  Effects of Continuum Breakdown on the Surface Properties of a Hypersonic Sphere , 2009 .

[56]  Thomas E. Schwartzentruber,et al.  Inelastic collision selection procedures for direct simulation Monte Carlo calculations of gas mixtures , 2013 .

[57]  G. Candler,et al.  Comparison of theory with atomic oxygen radiance data from a rocket flight , 1995 .

[58]  Graham V. Candler,et al.  Dissociation modeling in low density hypersonic flows of air , 1995 .

[59]  Graeme A. Bird,et al.  The DS2V/3V Program Suite for DSMC Calculations , 2005 .

[60]  Graeme A. Bird,et al.  Approach to Translational Equilibrium in a Rigid Sphere Gas , 1963 .

[61]  M. Gallis,et al.  DSMC Simulations in Support of the STS-107 Accident Investigation , 2005 .

[62]  I. Boyd,et al.  Sensitivity studies for prediction of ultra-violet radiation in nonequilibrium hypersonic bow-shock waves , 1997 .

[63]  Forrest E. Lumpkin,et al.  Resolution of differences between collision number definitions in particle and continuum simulations , 1991 .

[64]  E. Muntz,et al.  Experimental Investigation of Normal Shock Wave Velocity Distribution Functions in Mixtures of Argon and Helium , 1972 .

[65]  Iain D. Boyd,et al.  Effects of Rotational Energy Relaxation in a Modular Particle-Continuum Method , 2011 .

[66]  G Wilmoth Richard,et al.  Low-Density Aerodynamics of the Stardust Sample Return Capsule , 1997 .

[67]  Kazuhisa Fujita,et al.  Vibrational Relaxation and Dissociation Kinetics of CO by CO-O Collisions , 2008 .

[69]  L. Talbot,et al.  Experimental Study of the Rotational Distribution Function of Nitrogen in a Shock Wave , 1966 .

[70]  Application of a Modular Particle-Continuum Method to Hypersonic Propulsive Deceleration , 2011 .

[71]  Hassan Hassan,et al.  Assessment of schemes for coupling Monte Carlo and Navier-Stokes solution methods , 1996 .

[72]  Quanhua Sun,et al.  Evaluation of Macroscopic Properties in the Direct Simulation Monte Carlo Method , 2005 .

[73]  Paolo Valentini,et al.  Molecular dynamics simulation of rotational relaxation in nitrogen: Implications for rotational collision number models , 2012 .

[74]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[75]  T. Schwartzentruber,et al.  ClAssical Trajectory Calculation Direct Simulation Monte Carlo: GPU acceleration and three body collisions , 2013 .

[76]  Thomas E. Schwartzentruber,et al.  Hybrid Particle-Continuum Simulations of Hypersonic Flow Over a Hollow-Cylinder-Flare Geometry , 2008 .

[77]  Thomas E. Schwartzentruber,et al.  Multiscale Particle-Continuum Simulations of Hypersonic Flow over a Planetary Probe , 2008 .

[78]  Thomas E. Schwartzentruber,et al.  Consistent implementation of state-to-state collision models for direct simulation Monte Carlo , 2014 .

[79]  G. Candler,et al.  In situ plume radiance measurements from the bow shock ultraviolet 2 rocket flight , 1993 .

[80]  Takashi Ozawa,et al.  Analysis of Chemistry Models for DSMC Simulations of the Atmosphere of Io , 2012 .

[81]  Katsuhisa Koura,et al.  Direct simulation Monte Carlo study of rotational nonequilibrium in shock wave and spherical expansion of nitrogen using classical trajectory calculations , 2002 .

[82]  I. Boyd,et al.  Prediction of ultraviolet radiation in nonequilibrium hypersonic bow-shock waves , 1998 .

[83]  Hassan Hassan,et al.  A decoupled DSMC/Navier-Stokes analysis of a transitional flow experiment , 1996 .

[84]  D. C. Wadsworth,et al.  Assessment of direct simulation Monte Carlo phenomenological rotational relaxation models , 1998 .

[85]  Timothy Wadhams,et al.  CODE VALIDATION STUDY OF LAMINAR SHOCKIBOUNDARY LAYER AND SHOCK/SHOCK INTERACTIONS IN HYPERSONIC FLOW Part B: Comparison \\ith Navier-Stokes and DSMC Solutions , 2001 .

[86]  I. Adamovich,et al.  Vibrational Energy Transfer Rates Using a Forced Harmonic Oscillator Model , 1998 .

[87]  Iain D. Boyd,et al.  Modeling of Stardust Entry at High Altitude, Part 1: Flowfield Analysis , 2010 .

[88]  Tomás Soukup,et al.  Simulation Monte Carlo methods in extended stochastic volatility models , 2002, Intell. Syst. Account. Finance Manag..

[89]  Paolo Valentini,et al.  GPU-accelerated Classical Trajectory Calculation Direct Simulation Monte Carlo applied to shock waves , 2013, J. Comput. Phys..

[90]  Katsuhisa Koura,et al.  Monte Carlo direct simulation of rotational relaxation of nitrogen through high total temperature shock waves using classical trajectory calculations , 1998 .