Pfaffian decomposition and a Pfaffian analogue of q-Catalan Hankel determinants

Motivated by the Hankel determinant evaluation of moment sequences, we study a kind of Pfaffian analogue evaluation. We prove an LU-decomposition analogue for skew-symmetric matrices, called Pfaffian decomposition. We then apply this formula to evaluate Pfaffians related to some moment sequences of classical orthogonal polynomials. In particular we obtain a product formula for a kind of q-Catalan Pfaffians. We also establish a connection between our Pfaffian formulas and certain weighted enumeration of shifted reverse plane partitions.

[1]  I. Gessel,et al.  Binomial Determinants, Paths, and Hook Length Formulae , 1985 .

[2]  Madan Lal Mehta,et al.  Calculation of a Certain Determinant , 2000 .

[3]  Jiang Zeng,et al.  A q-analogue of Catalan Hankel determinants , 2010, 1009.2004.

[4]  Dongsu Kim,et al.  On Combinatorics of Al-Salam Carlitz Polynomials , 1997, Eur. J. Comb..

[5]  Tom H. Koornwinder,et al.  On Zeilberger's algorithm and its q-analogue: a rigorous description , 1993 .

[6]  Leonard Carlitz,et al.  Some Orthogonal q‐Polynomials , 1965 .

[7]  Masato Wakayama,et al.  Minor summation formula of Pfaffians , 1995 .

[8]  M. Schlosser BASIC HYPERGEOMETRIC SERIES , 2007 .

[9]  J.-G. Luque,et al.  Hankel hyperdeterminants and Selberg integrals , 2003 .

[10]  Masato Wakayama,et al.  Applications of minor summation formula III, Plücker relations, lattice paths and Pfaffian identities , 2006, J. Comb. Theory, Ser. A.

[11]  John R. Stembridge,et al.  Nonintersecting Paths, Pfaffians, and Plane Partitions , 1990 .

[12]  R. W. Gosper Decision procedure for indefinite hypergeometric summation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Leon M. Hall,et al.  Special Functions , 1998 .

[14]  Mark Adler,et al.  Toda versus Pfaff lattice and related polynomials , 2002 .

[15]  野海 正俊,et al.  Painlevé equations through symmetry , 2004 .

[16]  Rene F. Swarttouw,et al.  Hypergeometric Orthogonal Polynomials , 2010 .

[17]  G. Rw Decision procedure for indefinite hypergeometric summation , 1978 .

[18]  Philippe Flajolet Combinatorial aspects of continued fractions , 1980, Discret. Math..

[19]  Ira M. Gessel,et al.  Determinants, Paths, and Plane Partitions , 1989 .

[20]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[21]  Donald E. Knuth,et al.  Overlapping Pfaffians , 1995, Electron. J. Comb..

[22]  Christian Krattenthaler,et al.  Evaluations of some determinants of matrices related to the Pascal triangle , 2001, math/0111328.

[23]  Martin Aigner,et al.  A Course in Enumeration , 2007 .

[24]  B. Lindström On the Vector Representations of Induced Matroids , 1973 .

[25]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[26]  Ira M. Gessel,et al.  The Generating Function of Ternary Trees and Continued Fractions , 2006, Electron. J. Comb..

[27]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[28]  Roland Bacher,et al.  Determinants of matrices related to the Pascal triangle , 2002 .

[29]  Mihai Ciucu,et al.  The Interaction of a Gap with a Free Boundary in a Two Dimensional Dimer System , 2009, 0912.2023.