Structure of a pilin monomer from Pseudomonas aeruginosa: implications for the assembly of pili.

Type IV pilin monomers assemble to form fibers called pili that are required for a variety of bacterial functions. Pilin monomers oligomerize due to the interaction of part of their hydrophobic N-terminal alpha-helix. Engineering of a truncated pilin from Pseudomonas aeruginosa strain K122-4, where the first 28 residues are removed from the N terminus, yields a soluble, monomeric protein. This truncated pilin is shown to bind to its receptor and to decrease morbidity and mortality in mice upon administration 15 min before challenge with a heterologous strain of Pseudomonas. The structure of this truncated pilin reveals an alpha-helix at the N terminus that lies across a 4-stranded antiparallel beta-sheet. A model for a pilus is proposed that takes into account both electrostatic and hydrophobic interactions of pilin subunits as well as previously published x-ray fiber diffraction data. Our model indicates that DNA or RNA cannot pass through the center of the pilus, however, the possibility exists for small organic molecules to pass through indicating a potential mechanism for signal transduction.

[1]  B. Sykes,et al.  Letter to the Editor: Assignments of 1H and 15N resonances of the Pseudomonas aeruginosa K122-4 pilin monomer , 2001, Journal of biomolecular NMR.

[2]  B. Sykes,et al.  Backbone dynamics of receptor binding and antigenic regions of a Pseudomonas aeruginosa pilin monomer. , 2001, Biochemistry.

[3]  Michael P. Sheetz,et al.  Pilus retraction powers bacterial twitching motility , 2000, Nature.

[4]  R. Read,et al.  Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. , 2000, Journal of molecular biology.

[5]  A. Alonso,et al.  Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa. , 1999, Microbiology.

[6]  D. Maneval,et al.  A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria , 1999, Nature.

[7]  M. Koomey,et al.  The comP locus of Neisseria gonorrhoeae encodes a type IV prepilin that is dispensable for pilus biogenesis but essential for natural transformation , 1999, Molecular microbiology.

[8]  R. Hodges,et al.  The use of synthetic peptides in the design of a consensus sequence vaccine for Pseudomonas aeruginosa. , 2009, The journal of peptide research : official journal of the American Peptide Society.

[9]  L. Frost,et al.  Genetic Analysis of the Role of the Transfer Gene,traN, of the F and R100-1 Plasmids in Mating Pair Stabilization during Conjugation , 1998, Journal of bacteriology.

[10]  M. Wolfgang,et al.  PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae , 1998, Molecular microbiology.

[11]  H. Seifert,et al.  Comparisons between Colony Phase Variation ofNeisseria gonorrhoeae FA1090 and Pilus, Pilin, and S-Pilin Expression , 1998, Infection and Immunity.

[12]  Michael Nilges,et al.  Ambiguous NOEs and automated NOE assignment , 1998 .

[13]  J. Tainer,et al.  Type-4 pilus-structure: outside to inside and top to bottom--a minireview. , 1997, Gene.

[14]  M. Fussenegger,et al.  Transformation competence and type-4 pilus biogenesis in Neisseria gonorrhoeae--a review. , 1997, Gene.

[15]  Su-ryang Kim,et al.  The plasmid R64 thin pilus identified as a type IV pilus , 1997, Journal of bacteriology.

[16]  R. Hodges,et al.  Interaction of the receptor binding domains of Pseudomonas aeruginosa pili strains PAK, PAO, KB7 and P1 to a cross-reactive antibody and receptor analog: implications for synthetic vaccine design. , 1997, Journal of molecular biology.

[17]  P. Silverman Towards a structural biology of bacterial conjugation , 1997, Molecular microbiology.

[18]  R. Hodges,et al.  Engineering a de novo designed coiled-coil heterodimerization domain for the rapid detection, purification and characterization of recombinantly expressed peptides and proteins. , 1996, Protein engineering.

[19]  J. Mattick,et al.  The molecular genetics of type-4 fimbriae in Pseudomonas aeruginosa--a review. , 1996, Gene.

[20]  John A. Tainer,et al.  Structure of the fibre-forming protein pilin at 2.6 Å resolution , 1995, Nature.

[21]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[22]  D. Bamford,et al.  Bacterial conjugation mediated by plasmid RP4: RSF1010 mobilization, donor-specific phage propagation, and pilus production require the same Tra2 core components of a proposed DNA transport complex , 1995, Journal of bacteriology.

[23]  David S. Wishart,et al.  Constrained multiple sequence alignment using XALIGN , 1994, Comput. Appl. Biosci..

[24]  R. Hodges,et al.  Adherence of Pseudomonas aeruginosa and Candida albicans to glycosphingolipid (Asialo-GM1) receptors is achieved by a conserved receptor-binding domain present on their adhesins , 1994, Infection and immunity.

[25]  B. Sykes,et al.  Quantification of the calcium‐induced secondary structural changes in the regulatory domain of troponin‐C , 1994, Protein science : a publication of the Protein Society.

[26]  R. Irvin,et al.  Alteration of the pilin adhesin of Pseudomonas aeruginosa PAO results in normal pilus biogenesis but a loss of adherence to human pneumocyte cells and decreased virulence in mice , 1994, Infection and immunity.

[27]  Bruce A. Johnson,et al.  NMR View: A computer program for the visualization and analysis of NMR data , 1994, Journal of biomolecular NMR.

[28]  R. Hodges,et al.  The pili of Pseudomonas aeruginosa strains PAK and PAO bind specifically to the carbohydrate sequence βGalNAc(1–4)βGal found in glycosphingolipids asialo‐GM1 and asialo‐GM2 , 1994, Molecular microbiology.

[29]  R. Hodges,et al.  The binding of Pseudomonas aeruginosa pili to glycosphingolipids is a tip‐associated event involving the C‐terminal region of the structural pilin subunit , 1994, Molecular microbiology.

[30]  NMR solution structure and flexibility of a peptide antigen representing the receptor binding domain of Pseudomonas aeruginosa. , 1994, Biochemistry.

[31]  Ad Bax,et al.  Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNH.alpha.) coupling constants in 15N-enriched proteins , 1993 .

[32]  M. Bendinelli,et al.  Pseudomonas aeruginosa as an Opportunistic Pathogen , 1993, Infectious Agents and Pathogenesis.

[33]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .

[34]  T. Bächi,et al.  Conjugational junctions: morphology of specific contacts in conjugating Escherichia coli bacteria. , 1991, Journal of structural biology.

[35]  H. Domdey,et al.  Protection of immunosuppressed mice against infection with Pseudomonas aeruginosa by recombinant P. aeruginosa lipoprotein I and lipoprotein I-specific monoclonal antibodies , 1991, Infection and immunity.

[36]  R. Ramphal,et al.  Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1 (Gal beta 1-3GlcNAc) or type 2 (Gal beta 1-4GlcNAc) disaccharide units , 1991, Infection and immunity.

[37]  F. Rozsa,et al.  Identification, cloning, and sequencing of piv, a new gene involved in inverting the pilin genes of Moraxella lacunata , 1990, Journal of bacteriology.

[38]  J. Mattick,et al.  Morphogenetic expression of Moraxella bovis fimbriae (pili) in Pseudomonas aeruginosa , 1990, Journal of bacteriology.

[39]  A. Darzins,et al.  Pseudomonas aeruginosa transposable bacteriophages D3112 and B3 require pili and surface growth for adsorption , 1990, Journal of bacteriology.

[40]  T. Meyer,et al.  Variation and control of protein expression in Neisseria. , 1990, Annual Review of Microbiology.

[41]  R. Hodges,et al.  Mapping the surface regions of Pseudomonas aeruginosa PAK pilin: the importance of the C‐terminal region for adherence to human buccal epithelial cells , 1989, Molecular microbiology.

[42]  D. Scraba,et al.  Assembly of mutant pilins in Pseudomonas aeruginosa: formation of pili composed of heterologous subunits , 1989, Journal of bacteriology.

[43]  G. Schoolnik,et al.  Pilin-gene phase variation of Moraxella bovis is caused by an inversion of the pilin genes , 1988, Journal of bacteriology.

[44]  H. Schwarz,et al.  Release of soluble pilin antigen coupled with gene conversion in Neisseria gonorrhoeae. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[45]  K. Robbins,et al.  Gene conversion variations generate structurally distinct pilin polypeptides in Neisseria gonorrhoeae , 1987, The Journal of experimental medicine.

[46]  W. Paranchych,et al.  Fimbriae (pili): molecular basis of Pseudomonas aeruginosa adherence. , 1986, Clinical and investigative medicine. Medecine clinique et experimentale.

[47]  G. Pier Pulmonary disease associated with Pseudomonas aeruginosa in cystic fibrosis: current status of the host-bacterium interaction. , 1985, The Journal of infectious diseases.

[48]  E. Lydick,et al.  Responses of adult volunteers to a Pseudomonas aeruginosa exotoxoid-A vaccine. , 1985, The Journal of infectious diseases.

[49]  R. Ramphal,et al.  Role of pili in the adherence of Pseudomonas aeruginosa to injured tracheal epithelium , 1984, Infection and immunity.

[50]  G. Pier,et al.  Characterization of the human immune response to a polysaccharide vaccine from Pseudomonas aeruginosa. , 1983, The Journal of infectious diseases.

[51]  S. Cryz,et al.  Protection against Pseudomonas aeruginosa infection in a murine burn wound sepsis model by passive transfer of antitoxin A, antielastase, and antilipopolysaccharide , 1983, Infection and immunity.

[52]  G. Bodey,et al.  Infections caused by Pseudomonas aeruginosa. , 1983, Reviews of infectious diseases.

[53]  T. Watts,et al.  Formation of 9-nm filaments from pilin monomers obtained by octyl-glucoside dissociation of Pseudomonas aeruginosa pili , 1982, Journal of bacteriology.

[54]  M L Johnson,et al.  Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. , 1981, Biophysical journal.

[55]  D. Marvin,et al.  Structure of polar pili from Pseudomonas aeruginosa strains K and O. , 1981, Journal of molecular biology.

[56]  D. E. Bradley A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. , 1980, Canadian journal of microbiology.

[57]  H. Birnboim,et al.  A rapid alkaline extraction procedure for screening recombinant plasmid DNA. , 1979, Nucleic acids research.

[58]  G. Armstrong,et al.  Biochemical studies on pili isolated from Pseudomonas aeruginosa strain PAO. , 1979, Canadian journal of microbiology.

[59]  J. Pennington,et al.  Influence of genetic factors on natural resistance of mice to Pseudomonas aeruginosa. , 1979, The Journal of infectious diseases.

[60]  H. De,et al.  Experimentally induced infections bovine keratoconjunctivitis: effectiveness of a pilus vaccine against exposure to homologous strains of Moraxella bovis. , 1977 .