Fluid-Structure Interaction in the Cardiovascular System. Numerical Analysis and Simulation

In this thesis we focus on the numerical analysis and the development of efficient partitioned algorithms for fluid-structure interaction (FSI) problems arising in hemodynamics. In particular we consider the mechanical interaction of the blood with the large arteries, with the cardiac valves and with the myocardium. In partitioned FSI procedures the coupling between the fluid and the structure can be enforced in different ways: implicit, semi-implicit or explicit. In the first part of this thesis, the convergence properties of a projection semi-implicit coupling scheme are investigated from the theoretical and numerical viewpoints. Then, for the same scheme, we propose a modification that aims at improving its stability properties. This modification relies on the reinterpretation of the Nitsche's interface coupling as a particular Robin-Robin coupling. In the second part fluid-structure interaction problems with cardiac valves are addressed. For these problems we devise a modular partitioned strategy for the numerical simulation of 3D FSI problems where contact among multiple elastic solids can occur. For the analysis of the computational results, we also investigate the use of an advanced post-processing technique based on the notion of Lagrangian coherent structures. Finally, in the last part, a new reduced model for cardiac valves simulations is presented. This new model offers a compromise between standard lumped parameter models and fully 3D FSI problems. Various numerical experiments are presented to validate its efficiency and robustness. With this model, numerical simulations of the cardiac hemodynamics can be performed with a reduced computational cost.

[1]  David A. Lane,et al.  Interactive Time-Dependent Particle Tracing Using Tetrahedral Decomposition , 1996, IEEE Trans. Vis. Comput. Graph..

[2]  Jie Shen On error estimates of projection methods for Navier-Stokes equations: first-order schemes , 1992 .

[3]  Patrick Patrick Anderson,et al.  A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves , 2004 .

[4]  P. Pibarot,et al.  Assessment of aortic valve stenosis severity: A new index based on the energy loss concept. , 2000, Circulation.

[5]  Marc Thiriet,et al.  Biology and mechanics of blood flows , 2008 .

[6]  Vanessa Díaz-Zuccarini,et al.  An energetically coherent lumped parameter model of the left ventricle specially developed for educational purposes , 2007, Comput. Biol. Medicine.

[7]  L. Formaggia,et al.  On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations , 2007 .

[8]  Ekkehard Ramm,et al.  THE ARTIFICIAL ADDED MASS EFFECT IN SEQUENTIAL STAGGERED FLUID-STRUCTURE INTERACTION ALGORITHMS , 2006 .

[9]  R. Shandas,et al.  Analysis of the effect of flow rate on the Doppler continuity equation for stenotic orifice area calculations: a numerical study. , 1998, Circulation.

[10]  R GORLIN,et al.  Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. I. , 1951, American heart journal.

[11]  R. Temam Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .

[12]  Miguel Angel Fernández,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Vincent Martin,et al.  Projection Schemes for Fluid Flows through a Porous Interface , 2011, SIAM J. Sci. Comput..

[15]  Peter Hansbo,et al.  Nitsche's method for interface problems in computa‐tional mechanics , 2005 .

[16]  G. Haller Distinguished material surfaces and coherent structures in three-dimensional fluid flows , 2001 .

[17]  I. Shbeeb,et al.  The aortic valve , 1984, Diseases of the colon and rectum.

[18]  D. Ku,et al.  Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation between Plaque Location and Low and Oscillating Shear Stress , 1985, Arteriosclerosis.

[19]  Tod A. Laursen,et al.  Formulation and treatment of frictional contact problems using finite elements , 1992 .

[20]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[21]  A. Quarteroni,et al.  A SEMI-IMPLICIT APPROACH FOR FLUID-STRUCTURE INTERACTION BASED ON AN ALGEBRAIC FRACTIONAL STEP METHOD , 2007 .

[22]  R. Lathe Phd by thesis , 1988, Nature.

[23]  H. Matthies,et al.  Partitioned Strong Coupling Algorithms for Fluid-Structure-Interaction , 2003 .

[24]  Fabio Nobile,et al.  Numerical approximation of fluid-structure interaction problems with application to haemodynamics , 2001 .

[25]  Alfio Quarteroni,et al.  A domain decomposition framework for fluid-structure interaction problems , 2006 .

[26]  I. C. Howard,et al.  An approach to the simulation of fluid-structure interaction in the aortic valve. , 2006, Journal of biomechanics.

[27]  Jean-Luc Guermond,et al.  On the approximation of the unsteady Navier–Stokes equations by finite element projection methods , 1998, Numerische Mathematik.

[28]  Roland Glowinski,et al.  Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow , 2009, J. Comput. Phys..

[29]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[30]  Charbel Farhat,et al.  Partitioned procedures for the transient solution of coupled aeroelastic problems , 2001 .

[31]  Jerrold E. Marsden,et al.  Lagrangian coherent structures in n-dimensional systems , 2007 .

[32]  Theodosios Korakianitis,et al.  A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction. , 2006, Medical engineering & physics.

[33]  David Rodney Hose,et al.  Fundamental mechanics of aortic heart valve closure. , 2006, Journal of biomechanics.

[34]  Toshio Kobayashi,et al.  Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation , 2006 .

[35]  Yvon Maday,et al.  Nonconforming Grids for the Simulation of Fluid-Structure Interaction , 1998 .

[36]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[37]  Erik Burman,et al.  Stabilized explicit coupling for fluid-structure interaction using Nitsche s method , 2007 .

[38]  R. S. Alexander,et al.  The Genesis of the Aortic Standing Wave , 1953, Circulation research.

[39]  O. Pantz A frictionless contact algorithm for deformable bodies , 2011 .

[40]  Anthony T. Patera,et al.  Domain Decomposition by the Mortar Element Method , 1993 .

[41]  Fotis Sotiropoulos,et al.  Flow in Prosthetic Heart Valves: State-of-the-Art and Future Directions , 2005, Annals of Biomedical Engineering.

[42]  S. R. Parks,et al.  Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms , 2006, Journal of Fluid Mechanics.

[43]  F. NOBILE,et al.  An Effective Fluid-Structure Interaction Formulation for Vascular Dynamics by Generalized Robin Conditions , 2008, SIAM J. Sci. Comput..

[44]  Yvon Maday,et al.  The mortar element method for three dimensional finite elements , 1997 .

[45]  P. Hansbo,et al.  Nitsche's method combined with space–time finite elements for ALE fluid–structure interaction problems☆ , 2004 .

[46]  J. Davenport Editor , 1960 .

[47]  Ekkehard Ramm,et al.  Accelerated iterative substructuring schemes for instationary fluid-structure interaction , 2001 .

[48]  Fabio Nobile,et al.  Fluid-structure partitioned procedures based on Robin transmission conditions , 2008, J. Comput. Phys..

[49]  Cornel Marius Murea,et al.  A stable time advancing scheme for solving fluid-structure interaction problem at small structural displacements , 2008 .

[50]  Lee Waite,et al.  A new computer model of mitral valve hemodynamics during ventricular filling. , 2004, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[51]  M. Vidrascu,et al.  A partitioned Newton method for the interaction of a fluid and a 3D shell structure , 2010 .

[52]  M. Crawford,et al.  Calculation of aortic valve area by Doppler echocardiography: a direct application of the continuity equation. , 1986, Circulation.

[53]  Zhaosheng Yu A DLM/FD method for fluid/flexible-body interactions , 2005 .

[54]  Tayfun E. Tezduyar,et al.  Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces , 2004 .

[55]  C S Peskin,et al.  Fluid dynamics of the mitral valve: physiological aspects of a mathematical model. , 1982, The American journal of physiology.

[56]  R. Glowinski,et al.  A fictitious domain method for Dirichlet problem and applications , 1994 .

[57]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[58]  E. Weinberg,et al.  A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. , 2008, Journal of biomechanics.

[59]  van R Raoul Loon A 3D method for modelling the fluid-structure interaction of heart valves , 2005 .

[60]  Toshiaki Hisada,et al.  Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. , 2004, Biophysical journal.

[61]  Philippe Pibarot,et al.  New insights into the assessment of the prosthetic valve performance in the presence of subaortic stenosis through a fluid-structure interaction model. , 2007, Journal of biomechanics.

[62]  R. Armentano,et al.  Arterial wall mechanics in conscious dogs. Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior. , 1995, Circulation research.

[63]  Marina Vidrascu Shell based robust numerical procedures for the solution of real-life problems: conference in the honor of Michel Bernadou , 2008 .

[64]  Jean-Frédéric Gerbeau,et al.  A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows , 2003 .

[65]  Alexandre J. Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations , 1969 .

[66]  Frédérique Clément,et al.  A Biomechanical Model of Muscle Contraction , 2001, MICCAI.

[67]  Charles A. Taylor,et al.  Patient-specific modeling of cardiovascular mechanics. , 2009, Annual review of biomedical engineering.

[68]  Gianni Pedrizzetti,et al.  Three-dimensional filling flow into a model left ventricle , 2005, Journal of Fluid Mechanics.

[69]  Néjib Zemzemi Etude théorique et numérique de l’activité électrique du coeur : applications aux électrocardiogrammes , 2009 .

[70]  K. Bathe Finite Element Procedures , 1995 .

[71]  C. Peskin,et al.  Heart Simulation by an Immersed Boundary Method with Formal Second-order Accuracy and Reduced Numerical Viscosity , 2001 .

[72]  Editors , 1986, Brain Research Bulletin.

[73]  D. J. Hart Fluid-structure interaction in the aortic heart valve : a three-dimensional computational analysis , 2002 .

[74]  H. Matthies,et al.  Partitioned but strongly coupled iteration schemes for nonlinear fluid-structure interaction , 2002 .

[75]  Matteo Astorino,et al.  An added-mass free semi-implicit coupling scheme for fluid–structure interaction , 2009 .

[76]  Martin W. Heinstein,et al.  A general-purpose contact detection algorithm for nonlinear structural analysis codes , 1993 .

[77]  Jean-Frédéric Gerbeau,et al.  AN EMBEDDED SURFACE METHOD FOR VALVE SIMULATION. APPLICATION TO STENOTIC AORTIC VALVE ESTIMATION , 2005 .

[78]  Miguel A. Fernández,et al.  Numerical simulation of blood flows through a porous interface , 2008 .

[79]  M. Hillairet Lack of Collision Between Solid Bodies in a 2D Incompressible Viscous Flow , 2007 .

[80]  G. Holzapfel,et al.  Transversely isotropic membrane shells with application to mitral valve mechanics. Constitutive modelling and finite element implementation , 2007 .

[81]  Brant H Maines,et al.  Lumped parameter model for computing the minimum pressure during mechanical heart valve closure. , 2005, Journal of biomechanical engineering.

[82]  Jerrold E. Marsden,et al.  Study of blood flow impact on growth of thrombi using a multiscale model , 2009 .

[83]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[84]  R. Rannacher On chorin's projection method for the incompressible navier-stokes equations , 1992 .

[85]  P. M. Anderson,et al.  Vascular mechanics of the coronary artery , 2000, Zeitschrift für Kardiologie.

[86]  Miguel A. Fernández,et al.  ACCELERATION OF A FIXED POINT ALGORITHM FOR FLUID-STRUCTURE INTERACTION USING TRANSPIRATION CONDITIONS , 2003 .

[87]  L. Formaggia,et al.  Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart , 2006, Computer methods in biomechanics and biomedical engineering.

[88]  Santiago Badia,et al.  Convergence analysis of the FEM approximation of the first order projection method for incompressible flows with and without the inf-sup condition , 2007, Numerische Mathematik.

[89]  Jean-Luc Guermond,et al.  International Journal for Numerical Methods in Fluids on Stability and Convergence of Projection Methods Based on Pressure Poisson Equation , 2022 .

[90]  D. E. Kenyon,et al.  A mathematical model of water flux through aortic tissue. , 1979, Bulletin of mathematical biology.

[91]  T. H. Milroy A Manual of Physiology , 1901, Edinburgh Medical Journal.

[92]  Peter Hansbo,et al.  Nitsche's method for coupling non-matching meshes in fluid-structure vibration problems , 2003 .

[93]  Transient , 2010, World Literature Today.

[94]  P. Tallec,et al.  Fluid structure interaction with large structural displacements , 2001 .

[95]  A. Quarteroni,et al.  Fluid–structure algorithms based on Steklov–Poincaré operators , 2006 .

[96]  P. Hunter,et al.  Computational Mechanics of the Heart , 2000 .

[97]  Erik Burman,et al.  Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility , 2009 .

[98]  Roland Glowinski,et al.  A kinematically coupled time-splitting scheme for fluid-structure interaction in blood flow , 2009, Appl. Math. Lett..

[99]  Patrick Le Tallec,et al.  Numerical analysis of a linearised fluid-structure interaction problem , 2000, Numerische Mathematik.

[100]  P. Zunino,et al.  A Numerical Study of the Interaction of Blood Flow and Drug Release from Cardiovascular Stents , 2008 .

[101]  A. Yoganathan,et al.  Theoretical and practical differences between the Gorlin formula and the continuity equation for calculating aortic and mitral valve areas. , 1991, The American journal of cardiology.

[102]  Takéo Takahashi Analyse des équations modélisant le mouvement des systèmes couplant des solides rigides et des fluides visqueux , 2002 .

[103]  P. Kolh,et al.  Systemic and pulmonary hemodynamics assessed with a lumped-parameter heart-arterial interaction model , 2003 .

[104]  David J. Benson,et al.  Sliding interfaces with contact-impact in large-scale Lagrangian computations , 1985 .

[105]  W. M. Swanson,et al.  Dimensions and Geometric Relationships of the Human Aortic Value as a Function of Pressure , 1974, Circulation research.

[106]  G. Holzapfel,et al.  A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis , 2002 .

[107]  P. Hansbo,et al.  A finite element method for domain decomposition with non-matching grids , 2003 .

[108]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[109]  P. Wriggers Finite element algorithms for contact problems , 1995 .

[110]  Charles A. Taylor,et al.  A coupled momentum method for modeling blood flow in three-dimensional deformable arteries , 2006 .

[111]  D W Samways THE GENESIS OF THE DICROTIC PULSE WAVE , 1912, British medical journal.

[112]  X. Luob,et al.  Effect of ventricle motion on the dynamic behaviour of chorded mitral valves , 2008 .

[113]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[114]  Y. Fung,et al.  Mechanics of the Circulation , 2011, Developments in Cardiovascular Medicine.

[115]  Annalisa Quaini,et al.  Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction , 2008, SIAM J. Sci. Comput..

[116]  D. Chapelle,et al.  MODELING AND ESTIMATION OF THE CARDIAC ELECTROMECHANICAL ACTIVITY , 2006 .

[117]  Annalisa Quaini,et al.  Algorithms for fluid-structure interaction problems arising in hemodynamics , 2009 .

[118]  Miguel Angel Fernández,et al.  An exact Block–Newton algorithm for solving fluid–structure interaction problems , 2003 .

[119]  Charles A. Taylor,et al.  Characterization of Coherent Structures in the Cardiovascular System , 2008, Annals of Biomedical Engineering.

[120]  P. Libby,et al.  Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, 2-Volume Set, 9th Edition Expert Consult Premium Edition €“ Enhanced Online Features , 2011 .

[121]  A. Klarbring Large displacement frictional contact: a continuum framework for finite element discretization , 1995 .

[122]  Peter J Hunter,et al.  Modeling total heart function. , 2003, Annual review of biomedical engineering.

[123]  W Herzog,et al.  Modelling concentric contraction of muscle using an improved cross-bridge model. , 1999, Journal of biomechanics.

[124]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[125]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[126]  Eun-Ok Jung,et al.  LUMPED PARAMETER MODELS OF CARDIOVASCULAR CIRCULATION IN NORMAL AND ARRHYTHMIA CASES , 2006 .

[127]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[128]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[129]  Frank B. Sachse,et al.  Computational Cardiology , 2004, Lecture Notes in Computer Science.

[130]  Pascal Frey,et al.  Fluid-structure interaction in blood flows on geometries based on medical imaging , 2005 .

[131]  李幼升,et al.  Ph , 1989 .

[132]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[133]  Edward J Vigmond,et al.  Effect of bundle branch block on cardiac output: a whole heart simulation study. , 2008, Progress in biophysics and molecular biology.

[134]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[135]  S. Shadden,et al.  A dynamical systems approach to unsteady systems , 2006 .

[136]  Eli J. Weinberg,et al.  On the Constitutive Models for Heart Valve Leaflet Mechanics , 2005 .

[137]  Fabio Nobile,et al.  Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems , 2009 .

[138]  Y. Fung,et al.  Pseudoelasticity of arteries and the choice of its mathematical expression. , 1979, The American journal of physiology.

[139]  J. Chambers,et al.  Continuity equation and Gorlin formula compared with directly observed orifice area in native and prosthetic aortic valves. , 1992, British heart journal.

[140]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[141]  Adrian Ranga,et al.  Computational simulations of the aortic valve validated by imaging data: evaluation of valve-sparing techniques. , 2006, Interactive cardiovascular and thoracic surgery.

[142]  Miguel Angel Fern A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible uid , 2006 .

[143]  Risto Ilmoniemi,et al.  Wiley Encyclopedia of Biomedical Engineering , 2006 .

[144]  A. Quarteroni,et al.  On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels , 2001 .

[145]  T. Dawber,et al.  Characteristics of the Dicrotic Notch of the Arterial Pulse Wave in Coronary Heart Disease , 1973, Angiology.