Effect of particle content, size and temperature on magneto-thermo-mechanical creep behavior of composite cylinders

[1]  James C. Robinson Introduction to Ordinary Differential Equations , 2020, Essential Textbooks in Physics.

[2]  A. Loghman,et al.  Time-dependent magnetothermoelastic creep modeling of FGM spheres using method of successive elastic solution , 2012 .

[3]  A. Loghman,et al.  Time-dependent creep stress redistribution analysis of thick-walled functionally graded spheres , 2011 .

[4]  S. Amir,et al.  Time-dependent thermoelastic creep analysis of rotating disk made of Al–SiC composite , 2011 .

[5]  A. G. Arani,et al.  TIME-DEPENDENT CREEP STRESS REDISTRIBUTION ANALYSIS OF FUNCTIONALLY GRADED SPHERES , 2011 .

[6]  V. Gupta,et al.  Effect of anisotropy on steady state creep in functionally graded cylinder , 2011 .

[7]  S. Amir,et al.  Semi-analytical solution of magneto-thermo-elastic stresses for functionally graded variable thickness rotating disks , 2010 .

[8]  A. G. Arani,et al.  Magnetothermoelastic creep analysis of functionally graded cylinders , 2010 .

[9]  V. Gupta,et al.  Modeling Steady State Creep in Functionally Graded Thick Cylinder Subjected to Internal Pressure , 2010 .

[10]  A. Arefmanesh,et al.  Magnetothermoelastic stress and perturbation of magnetic field vector in a functionally graded hollow sphere , 2010 .

[11]  A. Loghman,et al.  Creep damage evaluation of thick-walled spheres using a long-term creep constitutive model , 2009 .

[12]  A. Ghorbanpour Arani,et al.  Magnetothermoelastic transient response of a functionally graded thick hollow sphere subjected to magnetic and thermoelastic fields , 2009 .

[13]  V. Gupta,et al.  Material Parameters and Creep in a Rotating Composite Cylinder , 2007 .

[14]  L. You,et al.  CREEP DEFORMATIONS AND STRESSES IN THICK-WALLED CYLINDRICAL VESSELS OF FUNCTIONALLY GRADED MATERIALS SUBJECTED TO INTERNAL PRESSURE , 2007 .

[15]  H. Dai,et al.  Magnetothermoelastic interactions in hollow structures of functionally graded material subjected to mechanical loads , 2007 .

[16]  Hongtao Zhang,et al.  Electromagnetic properties of silicon carbide foams and their composites with silicon dioxide as matrix in X-band , 2007 .

[17]  X. Wang,et al.  MAGNETOTHERMODYNAMIC STRESS AND PERTURBATION OF MAGNETIC FIELD VECTOR IN A NON-HOMOGENEOUS THERMOELASTIC CYLINDER , 2006 .

[18]  S. Singh,et al.  Creep analysis in an isotropic FGM rotating disc of Al–SiC composite , 2003 .

[19]  Y. Mahajan,et al.  Steady state creep behaviour of silicon carbide particulate reinforced aluminium composites , 1992 .

[20]  V. K. Arya,et al.  Creep analysis of orthotropic rotating cylinders considering finite strains , 1986 .

[21]  V. K. Arya,et al.  Creep Analysis of Orthotropic Rotating Cylinder , 1980 .

[22]  V. K. Arya,et al.  Large strain creep analysis of thick-walled cylinders , 1974 .

[23]  A. Boresi,et al.  Design for creep , 1972 .

[24]  R. K. Penny,et al.  Plane strain creep behaviour of thick-walled cylinders , 1971 .

[25]  Jan Smit,et al.  Magnetic properties of materials , 1971 .

[26]  C. Hargens Introduction to electric fields: by Walter E. Rogers. 333 pages, drawings and photographs, 16 × 23 cm. New York, McGraw-Hill Book Co., Inc., 1954. Price, $7.50 , 1954 .