Programmable graphene nanobubbles with three-fold symmetric pseudo-magnetic fields

[1]  Christopher J. Brennan,et al.  Interface-Governed Deformation of Nanobubbles and Nanotents Formed by Two-Dimensional Materials. , 2018, Physical review letters.

[2]  Christopher J. Brennan,et al.  Mechanics of spontaneously formed nanoblisters trapped by transferred 2D crystals , 2018, Proceedings of the National Academy of Sciences.

[3]  R. Nair,et al.  Dependence of the shape of graphene nanobubbles on trapped substance , 2017, Nature Communications.

[4]  M. Pumera,et al.  Graphene Nanobubbles Produced by Water Splitting. , 2017, Nano letters.

[5]  Lin He,et al.  Massless Dirac fermions trapping in a quasi-one-dimensional npn junction of a continuous graphene monolayer , 2017, 1702.03035.

[6]  A. Jauho,et al.  Graphene Nanobubbles as Valley Filters and Beam Splitters. , 2016, Physical review letters.

[7]  Rui Huang,et al.  Snap Transitions of Pressurized Graphene Blisters , 2016 .

[8]  Jiwoong Park,et al.  Klein tunnelling and electron trapping in nanometre-scale graphene quantum dots , 2016, Nature Physics.

[9]  Kenji Watanabe,et al.  Imaging electrostatically confined Dirac fermions in graphene quantum dots , 2016, Nature Physics.

[10]  F. Guinea,et al.  Graphene bubbles on a substrate : Universal shape and van der Waals pressure , 2016, 1604.00086.

[11]  A. Locatelli,et al.  Nanobubbles at GPa Pressure under Graphene. , 2015, Nano letters.

[12]  T. Venkatesan,et al.  Graphene Nanobubbles: A New Optical Nonlinear Material , 2015, 1506.06900.

[13]  Kenji Watanabe,et al.  Creating and probing electron whispering-gallery modes in graphene , 2015, Science.

[14]  A. Jauho,et al.  Patched Green's function techniques for two-dimensional systems: Electronic behavior of bubbles and perforations in graphene , 2015, 1501.06036.

[15]  S. V. Kusminskiy,et al.  Local sublattice symmetry breaking for graphene with a centrosymmetric deformation , 2015, 1501.02981.

[16]  Lin He,et al.  Landau quantization in graphene monolayer, Bernal bilayer, and Bernal trilayer on graphite surface , 2015, 1501.01538.

[17]  Harold S. Park,et al.  Pseudomagnetic fields in graphene nanobubbles of constrained geometry: A molecular dynamics study , 2014, 1406.1092.

[18]  Byung-Sung Kim,et al.  Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium , 2014, Science.

[19]  Z. Ou-Yang,et al.  Radius-voltage relation of graphene bubbles controlled by gate voltage , 2013, 1312.1778.

[20]  Rui Huang,et al.  Numerical Analysis of Circular Graphene Bubbles , 2013 .

[21]  Rui Huang,et al.  Analytical methods for the mechanics of graphene bubbles , 2012 .

[22]  C. A. Wright,et al.  Electromechanical Properties of Graphene Drumheads , 2012, Science.

[23]  K. Loh,et al.  Transforming moiré blisters into geometric graphene nano-bubbles , 2012, Nature Communications.

[24]  K. Novoselov,et al.  Graphene bubbles with controllable curvature , 2011, 1108.1701.

[25]  M. Dunn,et al.  Ultrastrong adhesion of graphene membranes. , 2011, Nature nanotechnology.

[26]  F. D. Juan,et al.  Aharonov–Bohm interferences from local deformations in graphene , 2011, 1105.0599.

[27]  A. Zettl,et al.  Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles , 2010, Science.

[28]  F. Guinea,et al.  Gauge fields in graphene , 2010, 1003.5179.

[29]  G. Capellini,et al.  Atomic-scale patterning of hydrogen terminated Ge(001) by scanning tunneling microscopy , 2009, Nanotechnology.

[30]  F. Guinea,et al.  Generating quantizing pseudomagnetic fields by bending graphene ribbons , 2009, 0910.5935.

[31]  F. Guinea,et al.  Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering , 2009, 0909.1787.

[32]  W. D. de Heer,et al.  Observing the Quantization of Zero Mass Carriers in Graphene , 2009, Science.

[33]  Yong P. Chen,et al.  AFM local oxidation nanolithography of graphene , 2009 .

[34]  A. Neto,et al.  Strain engineering of graphene's electronic structure. , 2008, Physical review letters.

[35]  Leonid P. Rokhinson,et al.  Atomic force microscope local oxidation nanolithography of graphene , 2008, 0807.2886.

[36]  Guohong Li,et al.  Observation of Landau levels of Dirac fermions in graphite , 2007, 0705.1185.

[37]  F. Guinea,et al.  Intervalley scattering, long-range disorder, and effective time-reversal symmetry breaking in graphene. , 2006, Physical review letters.

[38]  Phaedon Avouris,et al.  AFM-tip-induced and current-induced local oxidation of silicon and metals , 1998 .

[39]  J R Tucker,et al.  Atomic-Scale Desorption Through Electronic and Vibrational Excitation Mechanisms , 1995, Science.

[40]  K. Janda,et al.  Recombinative desorption of hydrogen from the Ge(100)–(2×1) surface: A laser‐induced desorption study , 1995 .

[41]  M F Crommie,et al.  Confinement of Electrons to Quantum Corrals on a Metal Surface , 1993, Science.

[42]  S. George,et al.  Laser-induced desorption of H2 from Si(111) 7 × 7 , 1991 .

[43]  Julia M. Goodfellow,et al.  Molecular dynamics study , 1997 .

[44]  P. Avouris,et al.  Scanning tunneling microscopy (STM) studies of the chemical vapor deposition of Ge on Si(111) from Ge hydrides and a comparison with molecular beam epitaxy , 1994 .