Luminescence of sensitive materials: towards new optical sensing

In the last decades, considerable efforts have been carried out to develop new tools and knowledge in the domain of functionalized materials, for application ranging information, lighting, communication, energy, optical sources or detection. To couple an optical answer with another property is possible through the follow-up of the luminescence. The control of the structural symmetry, oxidation state or surface chemistry enables the chemists to precisely tune the emission. Illustrations will be provided on inorganic powder and crystal materials.

[1]  Magnus Willander,et al.  Deep-level emissions influenced by O and Zn implantations in ZnO , 2005 .

[2]  C. Ronda,et al.  Luminescence : from theory to applications , 2008 .

[3]  Mostafa M Amini Zohreh Bahrami Leila Torkian Instant Synthesis of Nano Crystalline MgAl 2 O 4 Spinel Powder , 2011 .

[4]  M. Leskelä,et al.  Studies on the luminescence properties of manganese activated strontium borate SrB6O10 , 1985 .

[5]  Jianhua Hao,et al.  Cathodoluminescence of rare-earth-doped zinc aluminate films , 2004 .

[6]  Bruce E. Gnade,et al.  Mechanisms behind green photoluminescence in ZnO phosphor powders , 1996 .

[7]  Chao-Nan Xu,et al.  Origin of mechanoluminescence from Mn-activated ZnAl 2 O 4 : Triboelectricity-induced electroluminescence , 2004 .

[8]  M. Decker,et al.  Temperature dependent band gap and homogeneous line broadening of the exciton emission in ZnO , 2006 .

[9]  W. F. V. D. Weg,et al.  A search for luminescence of the trivalent manganese ion in solid aluminates , 1987 .

[10]  R. B. Barthem,et al.  Effects of Cr3+ concentration on the optical properties of Cs2NaAlF6 single crystals , 2013 .

[11]  L. Pereira,et al.  Temperature and Composition Dependence of the Cation Distribution in Synthetic ZnFeyAl2-yO4 (0 ≤ y ≤ 1) Spinels , 1994 .

[12]  Véronique Jubera,et al.  Optical properties of zinc oxide nanoparticles and nanorods synthesized using an organometallic method. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  G. Wong,et al.  Synthesis and Characterization of Poly(vinylpyrrolidone)-Modified Zinc Oxide Nanoparticles , 2000 .

[14]  Xiaowang W. Zhou,et al.  Crystal Growth and Scintillation Properties of ${\rm Cs}_{2}{\rm NaGdBr}_{6}{:}{\rm Ce}^{3+}$ , 2013, IEEE Transactions on Nuclear Science.

[15]  M. D. Birowosuto,et al.  Scintillation properties and anomalous Ce3+ emission of Cs2NaREBr6:Ce3+ (RE = La,Y,Lu) , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  S. Marre,et al.  Continuous supercritical synthesis of high quality UV-emitting ZnO nanocrystals for optochemical applications , 2013 .

[17]  M. Duttine,et al.  Luminescence switch of Mn-Doped ZnAl2O4 powder with temperature , 2014 .

[18]  M. Pouchard,et al.  Reversible photoionization process in luminescent Ce3+ doped elpasolite-type fluoroindates , 1995 .

[19]  R. Mlcak,et al.  Cathodoluminescence of Mn2+ centers in MgAl2O4 spinels , 1990 .

[20]  Jenssen,et al.  Impact of ion-host interactions on the 5d-to-4f spectra of lanthanide rare-earth-metal ions. II. The Ce-doped elpasolites. , 1986, Physical review. B, Condensed matter.

[21]  J. S. Reed,et al.  Equilibrium Cation Distribution in NiAl2O4, CuAl2O4, and ZnAl2O4 Spinels , 1972 .

[22]  Yu Hang Leung,et al.  Optical properties of ZnO nanostructures. , 2006, Small.

[23]  J. Chaminade,et al.  Luminescence of In+ in Ce3+ and Tb3+-doped elpasolite-type fluoroindates , 1999 .

[24]  C. Klingshirn ZnO: material, physics and applications. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  P. Magusin,et al.  Structural, elastic, thermophysical and dielectric properties of zinc aluminate (ZnAl2O4) , 2004 .

[26]  X. Zhang,et al.  Photoluminescent properties of copper-doped zinc oxide nanowires , 2004 .

[27]  S. Kurajica,et al.  Partial inverse spinel structure of manganese- doped gahnite: XRD and EPR spectroscopy studies , 2011 .

[28]  S. Kurajica,et al.  Inverse spinel structure of Co-doped gahnite , 2009 .

[29]  P. Veber,et al.  Discussion on the structure stability and the luminescence switch under irradiation of a Ce-doped elpasolite compound. , 2015, Chemistry.

[30]  F. Senocq,et al.  Lithium ion as growth-controlling agent of ZnO nanoparticles prepared by organometallic synthesis , 2008 .

[31]  Lucile Cornu,et al.  ZnAl2O4 as a potential sensor: variation of luminescence with thermal history , 2013 .

[32]  D. C. Reynolds,et al.  Fine structure on the green band in ZnO , 2001 .

[33]  S. Girard,et al.  f–d Luminescence of Pr3+ and Ce3+ in the chloro-elpasolite Cs2NaYCl6 , 1999 .

[34]  N. Lee,et al.  Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils , 2009 .

[35]  A. L. Nestour Corrélation structure - propriétés d'absorption UV-Vis-IR associée aux états de valence du cuivre dans des oxydes à base de zinc de type spinelle et würtzite , 2006 .

[36]  Urmila Shirwadkar,et al.  Selected Properties of Cs $_{2}$ LiYCl $_{6}$ , Cs $_{2}$ LiLaCl $_{6}$ , and Cs $_{2}$ LiLaBr $_{6}$ Scintillators , 2011 .

[37]  P. Vlăzan,et al.  Characterization and optical properties of ZnGa2O4:Eu3+ nanophosphor grown by hydrothermal method , 2010 .