Efficient Linear Array for Multiplication in GF(2m) Using a Normal Basis for Elliptic Curve Cryptography

We present a new sequential normal basis multiplier over GF(2 m ). The gate complexity of our multiplier is significantly reduced from that of Agnew et al. and is comparable to that of Reyhani-Masoleh and Hasan, which is the lowest complexity normal basis multiplier of the same kinds. On the other hand, the critical path delay of our multiplier is same to that of Agnew et al. Therefore it is supposed to have a shorter or the same critical path delay to that of Reyhani-Masoleh and Hasan. Moreover our method of using a Gaussian normal basis makes it easy to find a basic multiplication table of normal elements. So one can easily construct a circuit array for large finite fields, GF(2 m ) where m = 163, 233, 283, 409, 571, i.e. the five recommended fields by NIST for elliptic curve cryptography.

[1]  M. Anwar Hasan,et al.  A New Construction of Massey-Omura Parallel Multiplier over GF(2m) , 2002, IEEE Trans. Computers.

[2]  Ian F. Blake,et al.  Finite Field Multiplier Using Redundant Representation , 2002, IEEE Trans. Computers.

[3]  M. Anwar Hasan,et al.  Efficient Multiplication Beyond Optimal Normal Bases , 2003, IEEE Trans. Computers.

[4]  A. Menezes,et al.  Applications of Finite Fields , 1992 .

[5]  Gordon B. Agnew,et al.  An implementation for a fast public-key cryptosystem , 2004, Journal of Cryptology.

[6]  Shuhong Gao,et al.  On orders of optimal normal basis generators , 1995 .

[7]  Alistair Moffat,et al.  Algorithms and Computations , 1995, Lecture Notes in Computer Science.

[8]  PaarChristof,et al.  Efficient Multiplier Architectures for Galois Fields GF(24n) , 1998 .

[9]  Joachim von zur Gathen,et al.  Normal bases via general Gauss periods , 1999, Math. Comput..

[10]  Joachim von zur Gathen,et al.  Gauss periods: orders and cryptographical applications , 1998, Math. Comput..

[11]  Niklaus Wirth,et al.  Advances in Cryptology — EUROCRYPT ’88 , 2000, Lecture Notes in Computer Science.

[12]  Elwyn R. Berlekamp,et al.  Bit-serial Reed - Solomon encoders , 1982, IEEE Transactions on Information Theory.

[13]  A. Reyhani-Masoleh,et al.  Low complexity sequential normal basis multipliers over GF(2/sup m/) , 2003, Proceedings 2003 16th IEEE Symposium on Computer Arithmetic.

[14]  Gordon B. Agnew,et al.  Fast Exponentiation in GF(2n) , 1988, EUROCRYPT.

[15]  Christof Paar,et al.  Efficient Multiplier Architectures for Galois Fields GF(2 4n) , 1998, IEEE Trans. Computers.

[16]  Igor E. Shparlinski,et al.  Orders of Gauss Periods in Finite Fields , 1995, ISAAC.

[17]  Berk Sunar,et al.  An Efficient Optimal Normal Basis Type II Multiplier , 2001, IEEE Trans. Computers.