Tabu Search on the Geometric Traveling Salesman Problem

This paper presents a new tabu search approach for the geometric Traveling Salesman Problem. The use of complex TSP transitions in a tabu search context is investigated; among these transitions are the classical Lin-Kernighan transition and a new transition, called the Flower transition. The neighbourhood of the complex transitions is reduced strategically by using computational geometry forming a so-called variable candidate set of neighbouring solutions, the average quality of which controlled by a parameter. A new diversification method based on a notion of solution-distance is used. The experimental results are comparable to the best published results in the literature.

[1]  Shen Lin Computer solutions of the traveling salesman problem , 1965 .

[2]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[3]  Mihalis Yannakakis,et al.  How easy is local search? , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[4]  Miroslaw Malek,et al.  Serial and parallel simulated annealing and tabu search algorithms for the traveling salesman problem , 1990 .

[5]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[6]  Jon Louis Bentley,et al.  Experiments on traveling salesman heuristics , 1990, SODA '90.

[7]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[8]  David S. Johnson,et al.  Local Optimization and the Traveling Salesman Problem , 1990, ICALP.

[9]  Jon Louis Bentley,et al.  K-d trees for semidynamic point sets , 1990, SCG '90.

[10]  S. Bapna,et al.  An intelligent search strategy for solving the symmetric traveling salesman problem , 1991, Conference Proceedings 1991 IEEE International Conference on Systems, Man, and Cybernetics.

[11]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[12]  Edward W. Felten,et al.  Large-Step Markov Chains for the Traveling Salesman Problem , 1991, Complex Syst..

[13]  Giovanni Rinaldi,et al.  A Branch-and-Cut Algorithm for the Resolution of Large-Scale Symmetric Traveling Salesman Problems , 1991, SIAM Rev..

[14]  Y. M. Chee,et al.  Graph partitioning using tabu search , 1991, 1991., IEEE International Sympoisum on Circuits and Systems.

[15]  Edward W. Felten,et al.  Large-step markov chains for the TSP incorporating local search heuristics , 1992, Oper. Res. Lett..

[16]  Roberto Battiti,et al.  Parallel biased search for combinatorial optimization: genetic algorithms and TABU , 1992, Microprocess. Microsystems.

[17]  Gerhard Reinelt,et al.  Fast Heuristics for Large Geometric Traveling Salesman Problems , 1992, INFORMS J. Comput..

[18]  F Margot,et al.  Quick updates for p-opt TSP heuristics , 1992, Oper. Res. Lett..

[19]  Christos H. Papadimitriou,et al.  The Complexity of the Lin-Kernighan Heuristic for the Traveling Salesman Problem , 1992, SIAM J. Comput..

[20]  Gilbert Laporte,et al.  New Insertion and Postoptimization Procedures for the Traveling Salesman Problem , 1992, Oper. Res..

[21]  Jon Jouis Bentley,et al.  Fast Algorithms for Geometric Traveling Salesman Problems , 1992, INFORMS J. Comput..

[22]  Michel Gendreau,et al.  TOWARDS A TAXONOMY OF PARALLEL TABU SEARCH ALGORITHMS. , 1993 .

[23]  Ronald L. Rardin,et al.  Tabu search for a class of scheduling problems , 1993, Ann. Oper. Res..

[24]  Éric D. Taillard,et al.  Solving real-life vehicle routing problems efficiently using tabu search , 1993, Ann. Oper. Res..

[25]  Fred W. Glover,et al.  A user's guide to tabu search , 1993, Ann. Oper. Res..

[26]  F. Glover,et al.  In Modern Heuristic Techniques for Combinatorial Problems , 1993 .

[27]  Stefan Voß,et al.  Dynamic tabu list management using the reverse elimination method , 1993, Ann. Oper. Res..

[28]  Bennett L. Fox,et al.  Integrating and accelerating tabu search, simulated annealing, and genetic algorithms , 1993, Ann. Oper. Res..

[29]  David L. Woodruff,et al.  Hashing vectors for tabu search , 1993, Ann. Oper. Res..

[30]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[31]  Abraham P. Punnen,et al.  Categorized Assignment Scheduling: a Tabu Search Approach , 1993 .

[32]  Éric D. Taillard,et al.  Parallel Taboo Search Techniques for the Job Shop Scheduling Problem , 1994, INFORMS J. Comput..

[33]  Claude-Nicolas Fiechter,et al.  A Parallel Tabu Search Algorithm for Large Traveling Salesman Problems , 1994, Discret. Appl. Math..

[34]  G. Reinelt The traveling salesman: computational solutions for TSP applications , 1994 .

[35]  Olivier C. Martin,et al.  Combining simulated annealing with local search heuristics , 1993, Ann. Oper. Res..

[36]  Fred W. Glover,et al.  Ejection Chains, Reference Structures and Alternating Path Methods for Traveling Salesman Problems , 1996, Discret. Appl. Math..